ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovi3 GIF version

Theorem ovi3 6106
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovi3.1 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → 𝑆 ∈ (𝐻 × 𝐻))
ovi3.2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑅 = 𝑆)
ovi3.3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}
Assertion
Ref Expression
ovi3 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑆)
Distinct variable groups:   𝑢,𝑓,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐵,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝐶,𝑓,𝑢,𝑣,𝑤,𝑦,𝑧   𝐷,𝑓,𝑢,𝑣,𝑤,𝑦,𝑧   𝑓,𝐻,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑢,𝑣,𝑤,𝑧
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝑅(𝑤,𝑣,𝑢,𝑓)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓)

Proof of Theorem ovi3
StepHypRef Expression
1 ovi3.1 . . . 4 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → 𝑆 ∈ (𝐻 × 𝐻))
2 elex 2788 . . . 4 (𝑆 ∈ (𝐻 × 𝐻) → 𝑆 ∈ V)
31, 2syl 14 . . 3 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → 𝑆 ∈ V)
4 isset 2783 . . 3 (𝑆 ∈ V ↔ ∃𝑧 𝑧 = 𝑆)
53, 4sylib 122 . 2 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → ∃𝑧 𝑧 = 𝑆)
6 nfv 1552 . . 3 𝑧((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻))
7 nfcv 2350 . . . . 5 𝑧𝐴, 𝐵
8 ovi3.3 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}
9 nfoprab3 6019 . . . . . 6 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}
108, 9nfcxfr 2347 . . . . 5 𝑧𝐹
11 nfcv 2350 . . . . 5 𝑧𝐶, 𝐷
127, 10, 11nfov 5997 . . . 4 𝑧(⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩)
1312nfeq1 2360 . . 3 𝑧(⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑆
14 ovi3.2 . . . . . . 7 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑅 = 𝑆)
1514eqeq2d 2219 . . . . . 6 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑧 = 𝑅𝑧 = 𝑆))
1615copsex4g 4309 . . . . 5 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ 𝑧 = 𝑆))
17 opelxpi 4725 . . . . . 6 ((𝐴𝐻𝐵𝐻) → ⟨𝐴, 𝐵⟩ ∈ (𝐻 × 𝐻))
18 opelxpi 4725 . . . . . 6 ((𝐶𝐻𝐷𝐻) → ⟨𝐶, 𝐷⟩ ∈ (𝐻 × 𝐻))
19 nfcv 2350 . . . . . . 7 𝑥𝐴, 𝐵
20 nfcv 2350 . . . . . . 7 𝑦𝐴, 𝐵
21 nfcv 2350 . . . . . . 7 𝑦𝐶, 𝐷
22 nfv 1552 . . . . . . . 8 𝑥𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅)
23 nfoprab1 6017 . . . . . . . . . . 11 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}
248, 23nfcxfr 2347 . . . . . . . . . 10 𝑥𝐹
25 nfcv 2350 . . . . . . . . . 10 𝑥𝑦
2619, 24, 25nfov 5997 . . . . . . . . 9 𝑥(⟨𝐴, 𝐵𝐹𝑦)
2726nfeq1 2360 . . . . . . . 8 𝑥(⟨𝐴, 𝐵𝐹𝑦) = 𝑧
2822, 27nfim 1596 . . . . . . 7 𝑥(∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (⟨𝐴, 𝐵𝐹𝑦) = 𝑧)
29 nfv 1552 . . . . . . . 8 𝑦𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅)
30 nfoprab2 6018 . . . . . . . . . . 11 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}
318, 30nfcxfr 2347 . . . . . . . . . 10 𝑦𝐹
3220, 31, 21nfov 5997 . . . . . . . . 9 𝑦(⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩)
3332nfeq1 2360 . . . . . . . 8 𝑦(⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑧
3429, 33nfim 1596 . . . . . . 7 𝑦(∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑧)
35 eqeq1 2214 . . . . . . . . . . 11 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 = ⟨𝑤, 𝑣⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩))
3635anbi1d 465 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)))
3736anbi1d 465 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅)))
38374exbidv 1894 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅)))
39 oveq1 5974 . . . . . . . . 9 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥𝐹𝑦) = (⟨𝐴, 𝐵𝐹𝑦))
4039eqeq1d 2216 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥𝐹𝑦) = 𝑧 ↔ (⟨𝐴, 𝐵𝐹𝑦) = 𝑧))
4138, 40imbi12d 234 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (𝑥𝐹𝑦) = 𝑧) ↔ (∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (⟨𝐴, 𝐵𝐹𝑦) = 𝑧)))
42 eqeq1 2214 . . . . . . . . . . 11 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 = ⟨𝑢, 𝑓⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩))
4342anbi2d 464 . . . . . . . . . 10 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩)))
4443anbi1d 465 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅)))
45444exbidv 1894 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅)))
46 oveq2 5975 . . . . . . . . 9 (𝑦 = ⟨𝐶, 𝐷⟩ → (⟨𝐴, 𝐵𝐹𝑦) = (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩))
4746eqeq1d 2216 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵𝐹𝑦) = 𝑧 ↔ (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑧))
4845, 47imbi12d 234 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (⟨𝐴, 𝐵𝐹𝑦) = 𝑧) ↔ (∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑧)))
49 moeq 2955 . . . . . . . . . . . 12 ∃*𝑧 𝑧 = 𝑅
5049mosubop 4759 . . . . . . . . . . 11 ∃*𝑧𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)
5150mosubop 4759 . . . . . . . . . 10 ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅))
52 anass 401 . . . . . . . . . . . . . 14 (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)))
53522exbii 1630 . . . . . . . . . . . . 13 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)))
54 19.42vv 1936 . . . . . . . . . . . . 13 (∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)))
5553, 54bitri 184 . . . . . . . . . . . 12 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)))
56552exbii 1630 . . . . . . . . . . 11 (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ∃𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)))
5756mobii 2092 . . . . . . . . . 10 (∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)))
5851, 57mpbir 146 . . . . . . . . 9 ∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅)
5958a1i 9 . . . . . . . 8 ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) → ∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))
6059, 8ovidi 6087 . . . . . . 7 ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) → (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (𝑥𝐹𝑦) = 𝑧))
6119, 20, 21, 28, 34, 41, 48, 60vtocl2gaf 2845 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ (𝐻 × 𝐻) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐻 × 𝐻)) → (∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑧))
6217, 18, 61syl2an 289 . . . . 5 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (∃𝑤𝑣𝑢𝑓((⟨𝐴, 𝐵⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑧))
6316, 62sylbird 170 . . . 4 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (𝑧 = 𝑆 → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑧))
64 eqeq2 2217 . . . 4 (𝑧 = 𝑆 → ((⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑧 ↔ (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑆))
6563, 64mpbidi 151 . . 3 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (𝑧 = 𝑆 → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑆))
666, 13, 65exlimd 1621 . 2 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (∃𝑧 𝑧 = 𝑆 → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑆))
675, 66mpd 13 1 (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  ∃*wmo 2056  wcel 2178  Vcvv 2776  cop 3646   × cxp 4691  (class class class)co 5967  {coprab 5968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971
This theorem is referenced by:  oviec  6751  addcnsr  7982  mulcnsr  7983
  Copyright terms: Public domain W3C validator