ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbiran2d GIF version

Theorem mpbiran2d 439
Description: Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypotheses
Ref Expression
mpbiran2d.1 (𝜑𝜃)
mpbiran2d.2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
mpbiran2d (𝜑 → (𝜓𝜒))

Proof of Theorem mpbiran2d
StepHypRef Expression
1 mpbiran2d.2 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
2 mpbiran2d.1 . . 3 (𝜑𝜃)
32biantrud 302 . 2 (𝜑 → (𝜒 ↔ (𝜒𝜃)))
41, 3bitr4d 190 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  lgsneg  13565
  Copyright terms: Public domain W3C validator