ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbiran2d Unicode version

Theorem mpbiran2d 440
Description: Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypotheses
Ref Expression
mpbiran2d.1  |-  ( ph  ->  th )
mpbiran2d.2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
mpbiran2d  |-  ( ph  ->  ( ps  <->  ch )
)

Proof of Theorem mpbiran2d
StepHypRef Expression
1 mpbiran2d.2 . 2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
2 mpbiran2d.1 . . 3  |-  ( ph  ->  th )
32biantrud 302 . 2  |-  ( ph  ->  ( ch  <->  ( ch  /\ 
th ) ) )
41, 3bitr4d 190 1  |-  ( ph  ->  ( ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  lgsneg  13640
  Copyright terms: Public domain W3C validator