ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsneg GIF version

Theorem lgsneg 14092
Description: The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsneg ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)))

Proof of Theorem lgsneg
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3539 . . . . . . . . 9 (𝐴 < 0 → if(𝐴 < 0, -1, 1) = -1)
21adantl 277 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1)
32oveq1d 5884 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
4 simpl2 1001 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℤ)
5 0z 9253 . . . . . . . . . . 11 0 ∈ ℤ
6 zdclt 9319 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0)
75, 6mpan2 425 . . . . . . . . . 10 (𝑁 ∈ ℤ → DECID 𝑁 < 0)
8 oveq2 5877 . . . . . . . . . . . 12 (if(𝑁 < 0, -1, 1) = -1 → (-1 · if(𝑁 < 0, -1, 1)) = (-1 · -1))
9 neg1mulneg1e1 9120 . . . . . . . . . . . 12 (-1 · -1) = 1
108, 9eqtrdi 2226 . . . . . . . . . . 11 (if(𝑁 < 0, -1, 1) = -1 → (-1 · if(𝑁 < 0, -1, 1)) = 1)
11 oveq2 5877 . . . . . . . . . . . 12 (if(𝑁 < 0, -1, 1) = 1 → (-1 · if(𝑁 < 0, -1, 1)) = (-1 · 1))
12 ax-1cn 7895 . . . . . . . . . . . . 13 1 ∈ ℂ
1312mulm1i 8350 . . . . . . . . . . . 12 (-1 · 1) = -1
1411, 13eqtrdi 2226 . . . . . . . . . . 11 (if(𝑁 < 0, -1, 1) = 1 → (-1 · if(𝑁 < 0, -1, 1)) = -1)
1510, 14ifsbdc 3546 . . . . . . . . . 10 (DECID 𝑁 < 0 → (-1 · if(𝑁 < 0, -1, 1)) = if(𝑁 < 0, 1, -1))
167, 15syl 14 . . . . . . . . 9 (𝑁 ∈ ℤ → (-1 · if(𝑁 < 0, -1, 1)) = if(𝑁 < 0, 1, -1))
174, 16syl 14 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if(𝑁 < 0, -1, 1)) = if(𝑁 < 0, 1, -1))
18 simpr 110 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝐴 < 0)
1918biantrud 304 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
2019ifbid 3555 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
2120oveq2d 5885 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if(𝑁 < 0, -1, 1)) = (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
22 simpl3 1002 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ≠ 0)
2322necomd 2433 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 0 ≠ 𝑁)
24 zltlen 9320 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁)))
254, 5, 24sylancl 413 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁)))
2623, 25mpbiran2d 442 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ 𝑁 ≤ 0))
274zred 9364 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℝ)
2827le0neg1d 8464 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
29 0re 7948 . . . . . . . . . . . 12 0 ∈ ℝ
3027renegcld 8327 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → -𝑁 ∈ ℝ)
31 lenlt 8023 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝑁 ∈ ℝ) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0))
3229, 30, 31sylancr 414 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0))
3326, 28, 323bitrd 214 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ ¬ -𝑁 < 0))
3433ifbid 3555 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(¬ -𝑁 < 0, 1, -1))
35 znegcl 9273 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
36 zdclt 9319 . . . . . . . . . . . 12 ((-𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID -𝑁 < 0)
3735, 5, 36sylancl 413 . . . . . . . . . . 11 (𝑁 ∈ ℤ → DECID -𝑁 < 0)
38 ifnotdc 3570 . . . . . . . . . . 11 (DECID -𝑁 < 0 → if(¬ -𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1))
3937, 38syl 14 . . . . . . . . . 10 (𝑁 ∈ ℤ → if(¬ -𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1))
404, 39syl 14 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(¬ -𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1))
4134, 40eqtrd 2210 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1))
4217, 21, 413eqtr3d 2218 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if(-𝑁 < 0, -1, 1))
4318biantrud 304 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-𝑁 < 0 ↔ (-𝑁 < 0 ∧ 𝐴 < 0)))
4443ifbid 3555 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(-𝑁 < 0, -1, 1) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
453, 42, 443eqtrd 2214 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
46 1t1e1 9060 . . . . . . 7 (1 · 1) = 1
47 iffalse 3542 . . . . . . . . 9 𝐴 < 0 → if(𝐴 < 0, -1, 1) = 1)
4847adantl 277 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = 1)
49 simpr 110 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
5049intnand 931 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
5150iffalsed 3544 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
5248, 51oveq12d 5887 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (1 · 1))
5349intnand 931 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (-𝑁 < 0 ∧ 𝐴 < 0))
5453iffalsed 3544 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
5546, 52, 543eqtr4a 2236 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
56 simp1 997 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
57 zdclt 9319 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0)
5856, 5, 57sylancl 413 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → DECID 𝐴 < 0)
59 exmiddc 836 . . . . . . 7 (DECID 𝐴 < 0 → (𝐴 < 0 ∨ ¬ 𝐴 < 0))
6058, 59syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 < 0 ∨ ¬ 𝐴 < 0))
6145, 55, 60mpjaodan 798 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
6261eqcomd 2183 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)))
63 simpr 110 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
64 simpl2 1001 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℤ)
65 zq 9615 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
6664, 65syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℚ)
67 pcneg 12307 . . . . . . . . . . 11 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁))
6863, 66, 67syl2anc 411 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁))
6968oveq2d 5885 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
7069adantlr 477 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
71 prmdc 12113 . . . . . . . . 9 (𝑛 ∈ ℕ → DECID 𝑛 ∈ ℙ)
7271adantl 277 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → DECID 𝑛 ∈ ℙ)
7370, 72ifeq1dadc 3564 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
7473mpteq2dva 4090 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))
7574seqeq3d 10439 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))))
76 zcn 9247 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
77763ad2ant2 1019 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ)
7877absnegd 11182 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘-𝑁) = (abs‘𝑁))
7975, 78fveq12d 5518 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))
8062, 79oveq12d 5887 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = ((if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
81 neg1cn 9013 . . . . . 6 -1 ∈ ℂ
8281a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -1 ∈ ℂ)
8312a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 1 ∈ ℂ)
8482, 83, 58ifcldcd 3569 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) ∈ ℂ)
8573ad2ant2 1019 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → DECID 𝑁 < 0)
86 dcan2 934 . . . . . 6 (DECID 𝑁 < 0 → (DECID 𝐴 < 0 → DECID (𝑁 < 0 ∧ 𝐴 < 0)))
8785, 58, 86sylc 62 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → DECID (𝑁 < 0 ∧ 𝐴 < 0))
8882, 83, 87ifcldcd 3569 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
89 nnuz 9552 . . . . . . 7 ℕ = (ℤ‘1)
90 1zzd 9269 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 1 ∈ ℤ)
91 eqid 2177 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9291lgsfcl3 14089 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
9392ffvelcdmda 5647 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑥 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑥) ∈ ℤ)
94 zmulcl 9295 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
9594adantl 277 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
9689, 90, 93, 95seqf 10447 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))):ℕ⟶ℤ)
97 nnabscl 11093 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
98973adant1 1015 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
9996, 98ffvelcdmd 5648 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ)
10099zcnd 9365 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
10184, 88, 100mulassd 7971 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
10280, 101eqtrd 2210 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
103353ad2ant2 1019 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ∈ ℤ)
104 simp3 999 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
10577, 104negne0d 8256 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ≠ 0)
106 eqid 2177 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1))
107106lgsval4 14088 . . 3 ((𝐴 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ -𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))))
10856, 103, 105, 107syl3anc 1238 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))))
10991lgsval4 14088 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
110109oveq2d 5885 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
111102, 108, 1103eqtr4d 2220 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148  wne 2347  ifcif 3534   class class class wbr 4000  cmpt 4061  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   · cmul 7807   < clt 7982  cle 7983  -cneg 8119  cn 8908  cz 9242  cq 9608  seqcseq 10431  cexp 10505  abscabs 10990  cprime 12090   pCnt cpc 12267   /L clgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by:  lgsneg1  14093
  Copyright terms: Public domain W3C validator