Step | Hyp | Ref
| Expression |
1 | | iftrue 3524 |
. . . . . . . . 9
⊢ (𝐴 < 0 → if(𝐴 < 0, -1, 1) =
-1) |
2 | 1 | adantl 275 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝐴 < 0, -1, 1) = -1) |
3 | 2 | oveq1d 5856 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))) |
4 | | simpl2 991 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℤ) |
5 | | 0z 9198 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
6 | | zdclt 9264 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 < 0) |
7 | 5, 6 | mpan2 422 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
DECID 𝑁 <
0) |
8 | | oveq2 5849 |
. . . . . . . . . . . 12
⊢ (if(𝑁 < 0, -1, 1) = -1 → (-1
· if(𝑁 < 0, -1,
1)) = (-1 · -1)) |
9 | | neg1mulneg1e1 9065 |
. . . . . . . . . . . 12
⊢ (-1
· -1) = 1 |
10 | 8, 9 | eqtrdi 2214 |
. . . . . . . . . . 11
⊢ (if(𝑁 < 0, -1, 1) = -1 → (-1
· if(𝑁 < 0, -1,
1)) = 1) |
11 | | oveq2 5849 |
. . . . . . . . . . . 12
⊢ (if(𝑁 < 0, -1, 1) = 1 → (-1
· if(𝑁 < 0, -1,
1)) = (-1 · 1)) |
12 | | ax-1cn 7842 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
13 | 12 | mulm1i 8297 |
. . . . . . . . . . . 12
⊢ (-1
· 1) = -1 |
14 | 11, 13 | eqtrdi 2214 |
. . . . . . . . . . 11
⊢ (if(𝑁 < 0, -1, 1) = 1 → (-1
· if(𝑁 < 0, -1,
1)) = -1) |
15 | 10, 14 | ifsbdc 3531 |
. . . . . . . . . 10
⊢
(DECID 𝑁 < 0 → (-1 · if(𝑁 < 0, -1, 1)) = if(𝑁 < 0, 1,
-1)) |
16 | 7, 15 | syl 14 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (-1
· if(𝑁 < 0, -1,
1)) = if(𝑁 < 0, 1,
-1)) |
17 | 4, 16 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if(𝑁 < 0, -1, 1)) = if(𝑁 < 0, 1,
-1)) |
18 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝐴 < 0) |
19 | 18 | biantrud 302 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 < 0 ∧ 𝐴 < 0))) |
20 | 19 | ifbid 3540 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
21 | 20 | oveq2d 5857 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if(𝑁 < 0, -1, 1)) = (-1 ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1,
1))) |
22 | | simpl3 992 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ≠ 0) |
23 | 22 | necomd 2421 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 0 ≠ 𝑁) |
24 | | zltlen 9265 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 < 0
↔ (𝑁 ≤ 0 ∧ 0
≠ 𝑁))) |
25 | 4, 5, 24 | sylancl 410 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
26 | 23, 25 | mpbiran2d 439 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ 𝑁 ≤ 0)) |
27 | 4 | zred 9309 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → 𝑁 ∈ ℝ) |
28 | 27 | le0neg1d 8411 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
29 | | 0re 7895 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
30 | 27 | renegcld 8274 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → -𝑁 ∈ ℝ) |
31 | | lenlt 7970 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝑁
∈ ℝ) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0)) |
32 | 29, 30, 31 | sylancr 411 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (0 ≤ -𝑁 ↔ ¬ -𝑁 < 0)) |
33 | 26, 28, 32 | 3bitrd 213 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (𝑁 < 0 ↔ ¬ -𝑁 < 0)) |
34 | 33 | ifbid 3540 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(¬ -𝑁 < 0, 1,
-1)) |
35 | | znegcl 9218 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → -𝑁 ∈
ℤ) |
36 | | zdclt 9264 |
. . . . . . . . . . . 12
⊢ ((-𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID -𝑁 < 0) |
37 | 35, 5, 36 | sylancl 410 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ →
DECID -𝑁
< 0) |
38 | | ifnotdc 3555 |
. . . . . . . . . . 11
⊢
(DECID -𝑁 < 0 → if(¬ -𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1)) |
39 | 37, 38 | syl 14 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → if(¬
-𝑁 < 0, 1, -1) =
if(-𝑁 < 0, -1,
1)) |
40 | 4, 39 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(¬ -𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1)) |
41 | 34, 40 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(𝑁 < 0, 1, -1) = if(-𝑁 < 0, -1, 1)) |
42 | 17, 21, 41 | 3eqtr3d 2206 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-1 · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if(-𝑁 < 0, -1, 1)) |
43 | 18 | biantrud 302 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (-𝑁 < 0 ↔ (-𝑁 < 0 ∧ 𝐴 < 0))) |
44 | 43 | ifbid 3540 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → if(-𝑁 < 0, -1, 1) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
45 | 3, 42, 44 | 3eqtrd 2202 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
46 | | 1t1e1 9005 |
. . . . . . 7
⊢ (1
· 1) = 1 |
47 | | iffalse 3527 |
. . . . . . . . 9
⊢ (¬
𝐴 < 0 → if(𝐴 < 0, -1, 1) =
1) |
48 | 47 | adantl 275 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if(𝐴 < 0, -1, 1) =
1) |
49 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0) |
50 | 49 | intnand 921 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (𝑁 < 0 ∧ 𝐴 < 0)) |
51 | 50 | iffalsed 3529 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
52 | 48, 51 | oveq12d 5859 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = (1 ·
1)) |
53 | 49 | intnand 921 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → ¬ (-𝑁 < 0 ∧ 𝐴 < 0)) |
54 | 53 | iffalsed 3529 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
55 | 46, 52, 54 | 3eqtr4a 2224 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ ¬ 𝐴 < 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
56 | | simp1 987 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈
ℤ) |
57 | | zdclt 9264 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝐴 < 0) |
58 | 56, 5, 57 | sylancl 410 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID 𝐴 <
0) |
59 | | exmiddc 826 |
. . . . . . 7
⊢
(DECID 𝐴 < 0 → (𝐴 < 0 ∨ ¬ 𝐴 < 0)) |
60 | 58, 59 | syl 14 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 < 0 ∨ ¬ 𝐴 < 0)) |
61 | 45, 55, 60 | mpjaodan 788 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) = if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) |
62 | 61 | eqcomd 2171 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = (if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))) |
63 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈
ℙ) |
64 | | simpl2 991 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈
ℤ) |
65 | | zq 9560 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℚ) |
66 | 64, 65 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈
ℚ) |
67 | | pcneg 12252 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁)) |
68 | 63, 66, 67 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt -𝑁) = (𝑛 pCnt 𝑁)) |
69 | 68 | oveq2d 5857 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℙ) → ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁))) |
70 | 69 | adantlr 469 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁))) |
71 | | prmdc 12058 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
DECID 𝑛
∈ ℙ) |
72 | 71 | adantl 275 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) →
DECID 𝑛
∈ ℙ) |
73 | 70, 72 | ifeq1dadc 3549 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
74 | 73 | mpteq2dva 4071 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) |
75 | 74 | seqeq3d 10384 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))) |
76 | | zcn 9192 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
77 | 76 | 3ad2ant2 1009 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈
ℂ) |
78 | 77 | absnegd 11127 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
(abs‘-𝑁) =
(abs‘𝑁)) |
79 | 75, 78 | fveq12d 5492 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) |
80 | 62, 79 | oveq12d 5859 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = ((if(𝐴 < 0, -1, 1) · if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
81 | | neg1cn 8958 |
. . . . . 6
⊢ -1 ∈
ℂ |
82 | 81 | a1i 9 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -1 ∈
ℂ) |
83 | 12 | a1i 9 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 1 ∈
ℂ) |
84 | 82, 83, 58 | ifcldcd 3554 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) ∈
ℂ) |
85 | 7 | 3ad2ant2 1009 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID 𝑁 <
0) |
86 | | dcan2 924 |
. . . . . 6
⊢
(DECID 𝑁 < 0 → (DECID 𝐴 < 0 →
DECID (𝑁
< 0 ∧ 𝐴 <
0))) |
87 | 85, 58, 86 | sylc 62 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID (𝑁
< 0 ∧ 𝐴 <
0)) |
88 | 82, 83, 87 | ifcldcd 3554 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℂ) |
89 | | nnuz 9497 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
90 | | 1zzd 9214 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 1 ∈
ℤ) |
91 | | eqid 2165 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
92 | 91 | lgsfcl3 13522 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) |
93 | 92 | ffvelrnda 5619 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑥 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑥) ∈ ℤ) |
94 | | zmulcl 9240 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) |
95 | 94 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
96 | 89, 90, 93, 95 | seqf 10392 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)),
1))):ℕ⟶ℤ) |
97 | | nnabscl 11038 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
98 | 97 | 3adant1 1005 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) |
99 | 96, 98 | ffvelrnd 5620 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ) |
100 | 99 | zcnd 9310 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ) |
101 | 84, 88, 100 | mulassd 7918 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if(𝐴 < 0, -1, 1) ·
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1)) ·
(seq1( · , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
102 | 80, 101 | eqtrd 2198 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁))) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
103 | 35 | 3ad2ant2 1009 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ∈
ℤ) |
104 | | simp3 989 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0) |
105 | 77, 104 | negne0d 8203 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -𝑁 ≠ 0) |
106 | | eqid 2165 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt -𝑁)), 1)) |
107 | 106 | lgsval4 13521 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ -𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)))) |
108 | 56, 103, 105, 107 | syl3anc 1228 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if((-𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt -𝑁)), 1)))‘(abs‘-𝑁)))) |
109 | 91 | lgsval4 13521 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) |
110 | 109 | oveq2d 5857 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (if(𝐴 < 0, -1, 1) · (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))) |
111 | 102, 108,
110 | 3eqtr4d 2208 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) |