ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbirand GIF version

Theorem mpbirand 439
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mpbirand.1 (𝜑𝜒)
mpbirand.2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Assertion
Ref Expression
mpbirand (𝜑 → (𝜓𝜃))

Proof of Theorem mpbirand
StepHypRef Expression
1 mpbirand.2 . 2 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
2 mpbirand.1 . . 3 (𝜑𝜒)
32biantrurd 303 . 2 (𝜑 → (𝜃 ↔ (𝜒𝜃)))
41, 3bitr4d 190 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  fprodssdc  11553  txmetcn  13313
  Copyright terms: Public domain W3C validator