Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4d | GIF version |
Description: Deduction form of bitr4i 186. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
bitr4d | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 2 | bicomd 140 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
4 | 1, 3 | bitrd 187 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2d 215 3bitr2rd 216 3bitr4d 219 3bitr4rd 220 mpbirand 439 mpbiran2d 440 bianabs 606 imordc 892 3anibar 1160 xor2dc 1385 bilukdc 1391 reuhypd 4454 opelresi 4900 iota1 5172 funbrfv2b 5539 dffn5im 5540 fneqeql 5602 f1ompt 5645 dff13 5745 fliftcnv 5772 isotr 5793 isoini 5795 caovord3 6024 releldm2 6162 tpostpos 6241 nnsssuc 6479 nnaordi 6485 iserd 6537 ecdmn0m 6553 qliftel 6591 qliftfun 6593 qliftf 6596 ecopovsym 6607 mapen 6822 supisolem 6983 cnvti 6994 omp1eomlem 7069 ctssdc 7088 isomnimap 7111 ismkvmap 7128 iswomnimap 7140 recmulnqg 7346 nqtri3or 7351 ltmnqg 7356 mullocprlem 7525 addextpr 7576 gt0srpr 7703 ltsosr 7719 ltasrg 7725 map2psrprg 7760 xrlenlt 7977 letri3 7993 subadd 8115 ltsubadd2 8345 lesubadd2 8347 suble 8352 ltsub23 8354 ltaddpos2 8365 ltsubpos 8366 subge02 8390 ltaddsublt 8483 reapneg 8509 apsym 8518 apti 8534 leltap 8537 ap0gt0 8552 divmulap 8585 divmulap3 8587 rec11rap 8621 ltdiv1 8777 ltdivmul2 8787 ledivmul2 8789 ltrec 8792 suprleubex 8863 nnle1eq1 8895 avgle1 9111 avgle2 9112 nn0le0eq0 9156 znnnlt1 9253 zleltp1 9260 elz2 9276 uzm1 9510 uzin 9512 difrp 9642 xrletri3 9754 xgepnf 9766 xltnegi 9785 xltadd1 9826 xposdif 9832 xleaddadd 9837 elioo5 9883 elfz5 9966 fzdifsuc 10030 elfzm11 10040 uzsplit 10041 elfzonelfzo 10179 qtri3or 10192 qavgle 10208 flqbi 10239 flqbi2 10240 zmodid2 10301 q2submod 10334 sqap0 10535 lt2sq 10542 le2sq 10543 nn0opthlem1d 10647 bcval5 10690 zfz1isolemiso 10767 shftfib 10780 mulreap 10821 caucvgrelemcau 10937 caucvgre 10938 elicc4abs 11051 abs2difabs 11065 cau4 11073 maxclpr 11179 negfi 11184 lemininf 11190 mul0inf 11197 xrlemininf 11227 xrminltinf 11228 clim2 11239 climeq 11255 fisumss 11348 fsumabs 11421 isumshft 11446 absefib 11726 dvdsval3 11746 dvdslelemd 11796 dvdsabseq 11800 dvdsflip 11804 dvdsssfz1 11805 zeo3 11820 ndvdsadd 11883 dvdssq 11979 algcvgblem 11996 lcmdvds 12026 ncoprmgcdgt1b 12037 isprm3 12065 phiprmpw 12169 prmdiv 12182 pc11 12277 pcz 12278 pockthlem 12301 1arith 12312 discld 12895 isneip 12905 restopnb 12940 restopn2 12942 restdis 12943 lmbr2 12973 cnptoprest 12998 cnptoprest2 12999 tx1cn 13028 tx2cn 13029 txcnmpt 13032 txrest 13035 elbl2ps 13151 elbl2 13152 blcomps 13155 blcom 13156 xblpnfps 13157 xblpnf 13158 blpnf 13159 xmeter 13195 bdxmet 13260 metrest 13265 xmetxp 13266 metcn 13273 cncffvrn 13328 reefiso 13457 |
Copyright terms: Public domain | W3C validator |