Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4d | GIF version |
Description: Deduction form of bitr4i 186. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
bitr4d | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 2 | bicomd 140 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
4 | 1, 3 | bitrd 187 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2d 215 3bitr2rd 216 3bitr4d 219 3bitr4rd 220 mpbirand 438 mpbiran2d 439 bianabs 601 imordc 887 3anibar 1155 xor2dc 1380 bilukdc 1386 reuhypd 4449 opelresi 4895 iota1 5167 funbrfv2b 5531 dffn5im 5532 fneqeql 5593 f1ompt 5636 dff13 5736 fliftcnv 5763 isotr 5784 isoini 5786 caovord3 6015 releldm2 6153 tpostpos 6232 nnsssuc 6470 nnaordi 6476 iserd 6527 ecdmn0m 6543 qliftel 6581 qliftfun 6583 qliftf 6586 ecopovsym 6597 mapen 6812 supisolem 6973 cnvti 6984 omp1eomlem 7059 ctssdc 7078 isomnimap 7101 ismkvmap 7118 iswomnimap 7130 recmulnqg 7332 nqtri3or 7337 ltmnqg 7342 mullocprlem 7511 addextpr 7562 gt0srpr 7689 ltsosr 7705 ltasrg 7711 map2psrprg 7746 xrlenlt 7963 letri3 7979 subadd 8101 ltsubadd2 8331 lesubadd2 8333 suble 8338 ltsub23 8340 ltaddpos2 8351 ltsubpos 8352 subge02 8376 ltaddsublt 8469 reapneg 8495 apsym 8504 apti 8520 leltap 8523 ap0gt0 8538 divmulap 8571 divmulap3 8573 rec11rap 8607 ltdiv1 8763 ltdivmul2 8773 ledivmul2 8775 ltrec 8778 suprleubex 8849 nnle1eq1 8881 avgle1 9097 avgle2 9098 nn0le0eq0 9142 znnnlt1 9239 zleltp1 9246 elz2 9262 uzm1 9496 uzin 9498 difrp 9628 xrletri3 9740 xgepnf 9752 xltnegi 9771 xltadd1 9812 xposdif 9818 xleaddadd 9823 elioo5 9869 elfz5 9952 fzdifsuc 10016 elfzm11 10026 uzsplit 10027 elfzonelfzo 10165 qtri3or 10178 qavgle 10194 flqbi 10225 flqbi2 10226 zmodid2 10287 q2submod 10320 sqap0 10521 lt2sq 10528 le2sq 10529 nn0opthlem1d 10633 bcval5 10676 zfz1isolemiso 10752 shftfib 10765 mulreap 10806 caucvgrelemcau 10922 caucvgre 10923 elicc4abs 11036 abs2difabs 11050 cau4 11058 maxclpr 11164 negfi 11169 lemininf 11175 mul0inf 11182 xrlemininf 11212 xrminltinf 11213 clim2 11224 climeq 11240 fisumss 11333 fsumabs 11406 isumshft 11431 absefib 11711 dvdsval3 11731 dvdslelemd 11781 dvdsabseq 11785 dvdsflip 11789 dvdsssfz1 11790 zeo3 11805 ndvdsadd 11868 dvdssq 11964 algcvgblem 11981 lcmdvds 12011 ncoprmgcdgt1b 12022 isprm3 12050 phiprmpw 12154 prmdiv 12167 pc11 12262 pcz 12263 pockthlem 12286 1arith 12297 discld 12776 isneip 12786 restopnb 12821 restopn2 12823 restdis 12824 lmbr2 12854 cnptoprest 12879 cnptoprest2 12880 tx1cn 12909 tx2cn 12910 txcnmpt 12913 txrest 12916 elbl2ps 13032 elbl2 13033 blcomps 13036 blcom 13037 xblpnfps 13038 xblpnf 13039 blpnf 13040 xmeter 13076 bdxmet 13141 metrest 13146 xmetxp 13147 metcn 13154 cncffvrn 13209 reefiso 13338 |
Copyright terms: Public domain | W3C validator |