![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4d | GIF version |
Description: Deduction form of bitr4i 186. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
bitr4d | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 2 | bicomd 140 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
4 | 1, 3 | bitrd 187 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2d 215 3bitr2rd 216 3bitr4d 219 3bitr4rd 220 bianabs 579 imordc 837 3anibar 1114 xor2dc 1333 bilukdc 1339 reuhypd 4321 opelresi 4756 iota1 5028 funbrfv2b 5384 dffn5im 5385 fneqeql 5446 f1ompt 5489 dff13 5585 fliftcnv 5612 isotr 5633 isoini 5635 caovord3 5856 releldm2 5993 tpostpos 6067 nnaordi 6307 iserd 6358 ecdmn0m 6374 qliftel 6412 qliftfun 6414 qliftf 6417 ecopovsym 6428 mapen 6642 supisolem 6783 cnvti 6794 isomnimap 6880 ismkvmap 6898 recmulnqg 7047 nqtri3or 7052 ltmnqg 7057 mullocprlem 7226 addextpr 7277 gt0srpr 7391 ltsosr 7407 ltasrg 7413 xrlenlt 7648 letri3 7663 subadd 7782 ltsubadd2 8008 lesubadd2 8010 suble 8015 ltsub23 8017 ltaddpos2 8028 ltsubpos 8029 subge02 8053 ltaddsublt 8145 reapneg 8171 apsym 8180 apti 8196 leltap 8198 ap0gt0 8212 divmulap 8239 divmulap3 8241 rec11rap 8275 ltdiv1 8426 ltdivmul2 8436 ledivmul2 8438 ltrec 8441 suprleubex 8512 nnle1eq1 8544 avgle1 8754 avgle2 8755 nn0le0eq0 8799 znnnlt1 8896 zleltp1 8903 elz2 8916 uzm1 9148 uzin 9150 difrp 9269 xrletri3 9371 xgepnf 9382 xltnegi 9401 xltadd1 9442 xposdif 9448 xleaddadd 9453 elioo5 9499 elfz5 9581 fzdifsuc 9644 elfzm11 9654 uzsplit 9655 elfzonelfzo 9790 qtri3or 9803 qavgle 9819 flqbi 9846 flqbi2 9847 zmodid2 9908 q2submod 9941 sqap0 10136 lt2sq 10143 le2sq 10144 nn0opthlem1d 10243 bcval5 10286 zfz1isolemiso 10359 shftfib 10372 mulreap 10413 caucvgrelemcau 10528 caucvgre 10529 elicc4abs 10642 abs2difabs 10656 cau4 10664 maxclpr 10770 negfi 10774 lemininf 10780 xrlemininf 10814 xrminltinf 10815 clim2 10826 climeq 10842 fisumss 10935 fsumabs 11008 isumshft 11033 absefib 11209 dvdsval3 11227 dvdslelemd 11271 dvdsabseq 11275 dvdsflip 11279 dvdsssfz1 11280 zeo3 11295 ndvdsadd 11358 dvdssq 11447 algcvgblem 11458 lcmdvds 11488 ncoprmgcdgt1b 11499 isprm3 11527 phiprmpw 11625 discld 11988 isneip 11998 restopnb 12033 restopn2 12035 restdis 12036 lmbr2 12065 cnptoprest 12090 cnptoprest2 12091 elbl2ps 12178 elbl2 12179 blcomps 12182 blcom 12183 xblpnfps 12184 xblpnf 12185 blpnf 12186 xmeter 12222 bdxmet 12287 metrest 12292 metcn 12296 cncffvrn 12337 |
Copyright terms: Public domain | W3C validator |