ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nalequcoms GIF version

Theorem nalequcoms 1497
Description: A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 2-Feb-2015.)
Hypothesis
Ref Expression
nalequcoms.1 (¬ ∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
nalequcoms (¬ ∀𝑦 𝑦 = 𝑥𝜑)

Proof of Theorem nalequcoms
StepHypRef Expression
1 alequcom 1495 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
21con3i 622 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑦)
3 nalequcoms.1 . 2 (¬ ∀𝑥 𝑥 = 𝑦𝜑)
42, 3syl 14 1 (¬ ∀𝑦 𝑦 = 𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1333   = wceq 1335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605  ax-10 1485
This theorem is referenced by:  nd5  1798
  Copyright terms: Public domain W3C validator