ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nalequcoms Unicode version

Theorem nalequcoms 1505
Description: A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 2-Feb-2015.)
Hypothesis
Ref Expression
nalequcoms.1  |-  ( -. 
A. x  x  =  y  ->  ph )
Assertion
Ref Expression
nalequcoms  |-  ( -. 
A. y  y  =  x  ->  ph )

Proof of Theorem nalequcoms
StepHypRef Expression
1 alequcom 1503 . . 3  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
21con3i 622 . 2  |-  ( -. 
A. y  y  =  x  ->  -.  A. x  x  =  y )
3 nalequcoms.1 . 2  |-  ( -. 
A. x  x  =  y  ->  ph )
42, 3syl 14 1  |-  ( -. 
A. y  y  =  x  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1341    = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605  ax-10 1493
This theorem is referenced by:  nd5  1806
  Copyright terms: Public domain W3C validator