Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfr | GIF version |
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) |
Ref | Expression |
---|---|
nfr | ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1454 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | sp 1504 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfri 1512 nfrd 1513 nfimd 1578 19.23t 1670 equs5or 1823 sbequi 1832 sbft 1841 sbcomxyyz 1965 rgen2a 2524 |
Copyright terms: Public domain | W3C validator |