ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfr GIF version

Theorem nfr 1564
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.)
Assertion
Ref Expression
nfr (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))

Proof of Theorem nfr
StepHypRef Expression
1 df-nf 1507 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 sp 1557 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑))
31, 2sylbi 121 1 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1556
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  nfri  1565  nfrd  1566  nfimd  1631  19.23t  1723  equs5or  1876  sbequi  1885  sbft  1894  sbcomxyyz  2023  rgen2a  2584
  Copyright terms: Public domain W3C validator