| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfr | GIF version | ||
| Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfr | ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | sp 1525 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfri 1533 nfrd 1534 nfimd 1599 19.23t 1691 equs5or 1844 sbequi 1853 sbft 1862 sbcomxyyz 1991 rgen2a 2551 |
| Copyright terms: Public domain | W3C validator |