ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alequcoms GIF version

Theorem alequcoms 1509
Description: A commutation rule for identical variable specifiers. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
alequcoms.1 (∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
alequcoms (∀𝑦 𝑦 = 𝑥𝜑)

Proof of Theorem alequcoms
StepHypRef Expression
1 alequcom 1508 . 2 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
2 alequcoms.1 . 2 (∀𝑥 𝑥 = 𝑦𝜑)
31, 2syl 14 1 (∀𝑦 𝑦 = 𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-10 1498
This theorem is referenced by:  hbae  1711  dral1  1723  drex1  1791  aev  1805  sbequi  1832
  Copyright terms: Public domain W3C validator