ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfnuleu GIF version

Theorem zfnuleu 4167
Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2189 to strengthen the hypothesis in the form of axnul 4168). (Contributed by NM, 22-Dec-2007.)
Hypothesis
Ref Expression
zfnuleu.1 𝑥𝑦 ¬ 𝑦𝑥
Assertion
Ref Expression
zfnuleu ∃!𝑥𝑦 ¬ 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem zfnuleu
StepHypRef Expression
1 zfnuleu.1 . . . 4 𝑥𝑦 ¬ 𝑦𝑥
2 nbfal 1383 . . . . . 6 𝑦𝑥 ↔ (𝑦𝑥 ↔ ⊥))
32albii 1492 . . . . 5 (∀𝑦 ¬ 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥 ↔ ⊥))
43exbii 1627 . . . 4 (∃𝑥𝑦 ¬ 𝑦𝑥 ↔ ∃𝑥𝑦(𝑦𝑥 ↔ ⊥))
51, 4mpbi 145 . . 3 𝑥𝑦(𝑦𝑥 ↔ ⊥)
6 nfv 1550 . . . 4 𝑥
76bm1.1 2189 . . 3 (∃𝑥𝑦(𝑦𝑥 ↔ ⊥) → ∃!𝑥𝑦(𝑦𝑥 ↔ ⊥))
85, 7ax-mp 5 . 2 ∃!𝑥𝑦(𝑦𝑥 ↔ ⊥)
93eubii 2062 . 2 (∃!𝑥𝑦 ¬ 𝑦𝑥 ↔ ∃!𝑥𝑦(𝑦𝑥 ↔ ⊥))
108, 9mpbir 146 1 ∃!𝑥𝑦 ¬ 𝑦𝑥
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wal 1370  wfal 1377  wex 1514  ∃!weu 2053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator