Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfnuleu | GIF version |
Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2150 to strengthen the hypothesis in the form of axnul 4107). (Contributed by NM, 22-Dec-2007.) |
Ref | Expression |
---|---|
zfnuleu.1 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Ref | Expression |
---|---|
zfnuleu | ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfnuleu.1 | . . . 4 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
2 | nbfal 1354 | . . . . . 6 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ⊥)) | |
3 | 2 | albii 1458 | . . . . 5 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
4 | 3 | exbii 1593 | . . . 4 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
5 | 1, 4 | mpbi 144 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
6 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑥⊥ | |
7 | 6 | bm1.1 2150 | . . 3 ⊢ (∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) → ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
9 | 3 | eubii 2023 | . 2 ⊢ (∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
10 | 8, 9 | mpbir 145 | 1 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wal 1341 ⊥wfal 1348 ∃wex 1480 ∃!weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |