| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfnuleu | GIF version | ||
| Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2191 to strengthen the hypothesis in the form of axnul 4177). (Contributed by NM, 22-Dec-2007.) |
| Ref | Expression |
|---|---|
| zfnuleu.1 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Ref | Expression |
|---|---|
| zfnuleu | ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfnuleu.1 | . . . 4 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
| 2 | nbfal 1384 | . . . . . 6 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ⊥)) | |
| 3 | 2 | albii 1494 | . . . . 5 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 4 | 3 | exbii 1629 | . . . 4 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 5 | 1, 4 | mpbi 145 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
| 6 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑥⊥ | |
| 7 | 6 | bm1.1 2191 | . . 3 ⊢ (∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) → ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
| 9 | 3 | eubii 2064 | . 2 ⊢ (∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 10 | 8, 9 | mpbir 146 | 1 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1371 ⊥wfal 1378 ∃wex 1516 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |