| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfnuleu | GIF version | ||
| Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2189 to strengthen the hypothesis in the form of axnul 4168). (Contributed by NM, 22-Dec-2007.) |
| Ref | Expression |
|---|---|
| zfnuleu.1 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Ref | Expression |
|---|---|
| zfnuleu | ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfnuleu.1 | . . . 4 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
| 2 | nbfal 1383 | . . . . . 6 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ⊥)) | |
| 3 | 2 | albii 1492 | . . . . 5 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 4 | 3 | exbii 1627 | . . . 4 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 5 | 1, 4 | mpbi 145 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
| 6 | nfv 1550 | . . . 4 ⊢ Ⅎ𝑥⊥ | |
| 7 | 6 | bm1.1 2189 | . . 3 ⊢ (∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) → ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
| 9 | 3 | eubii 2062 | . 2 ⊢ (∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 10 | 8, 9 | mpbir 146 | 1 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∀wal 1370 ⊥wfal 1377 ∃wex 1514 ∃!weu 2053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |