ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2abiidc GIF version

Theorem necon2abiidc 2319
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon2abiidc.1 (DECID 𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜑))
Assertion
Ref Expression
necon2abiidc (DECID 𝜑 → (𝜑𝐴𝐵))

Proof of Theorem necon2abiidc
StepHypRef Expression
1 necon2abiidc.1 . . . 4 (DECID 𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜑))
21bicomd 139 . . 3 (DECID 𝜑 → (¬ 𝜑𝐴 = 𝐵))
32necon1abiidc 2315 . 2 (DECID 𝜑 → (𝐴𝐵𝜑))
43bicomd 139 1 (DECID 𝜑 → (𝜑𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  DECID wdc 780   = wceq 1289  wne 2255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665
This theorem depends on definitions:  df-bi 115  df-dc 781  df-ne 2256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator