Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon1idc | GIF version |
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.) |
Ref | Expression |
---|---|
necon1idc.1 | ⊢ (𝐴 ≠ 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon1idc | ⊢ (DECID 𝐴 = 𝐵 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2341 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1idc.1 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → 𝐶 = 𝐷) | |
3 | 1, 2 | sylbir 134 | . . 3 ⊢ (¬ 𝐴 = 𝐵 → 𝐶 = 𝐷) |
4 | 3 | a1i 9 | . 2 ⊢ (DECID 𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐶 = 𝐷)) |
5 | 4 | necon1aidc 2391 | 1 ⊢ (DECID 𝐴 = 𝐵 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 829 = wceq 1348 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-ne 2341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |