Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon1idc | GIF version |
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.) |
Ref | Expression |
---|---|
necon1idc.1 | ⊢ (𝐴 ≠ 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon1idc | ⊢ (DECID 𝐴 = 𝐵 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2346 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1idc.1 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → 𝐶 = 𝐷) | |
3 | 1, 2 | sylbir 135 | . . 3 ⊢ (¬ 𝐴 = 𝐵 → 𝐶 = 𝐷) |
4 | 3 | a1i 9 | . 2 ⊢ (DECID 𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐶 = 𝐷)) |
5 | 4 | necon1aidc 2396 | 1 ⊢ (DECID 𝐴 = 𝐵 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 834 = wceq 1353 ≠ wne 2345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-ne 2346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |