| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > necon1idc | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.) | 
| Ref | Expression | 
|---|---|
| necon1idc.1 | ⊢ (𝐴 ≠ 𝐵 → 𝐶 = 𝐷) | 
| Ref | Expression | 
|---|---|
| necon1idc | ⊢ (DECID 𝐴 = 𝐵 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne 2368 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1idc.1 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | sylbir 135 | . . 3 ⊢ (¬ 𝐴 = 𝐵 → 𝐶 = 𝐷) | 
| 4 | 3 | a1i 9 | . 2 ⊢ (DECID 𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐶 = 𝐷)) | 
| 5 | 4 | necon1aidc 2418 | 1 ⊢ (DECID 𝐴 = 𝐵 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 DECID wdc 835 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-ne 2368 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |