Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon2ai | GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 617 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | df-ne 2337 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-ne 2337 |
This theorem is referenced by: necon2i 2392 neneqad 2415 intexr 4129 iin0r 4148 tfrlemisucaccv 6293 pm54.43 7146 renepnf 7946 renemnf 7947 lt0ne0d 8411 nnne0 8885 nn0nepnf 9185 hashennn 10693 bj-intexr 13790 |
Copyright terms: Public domain | W3C validator |