Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylbir | GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylbir.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylbir | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylbir.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3i 200 3ori 1300 19.30dc 1625 nf4r 1669 cbvexv1 1750 cbvexh 1753 equveli 1757 sbequilem 1836 sb5rf 1850 nfsbxy 1940 nfsbxyt 1941 sbcomxyyz 1970 dvelimALT 2008 dvelimfv 2009 dvelimor 2016 mo2n 2052 mo23 2065 2exeu 2116 bm1.1 2160 necon1idc 2398 sbhypf 2784 vtocl2 2790 vtocl3 2791 reu6 2924 rmo2ilem 3050 uneqin 3384 abn0r 3445 inelcm 3481 vdif0im 3486 difrab0eqim 3487 r19.3rm 3509 r19.9rmv 3512 difprsn1 3728 intminss 3865 disjnim 3989 bm1.3ii 4119 intexabim 4147 copsex2g 4240 opelopabt 4256 eusv2nf 4450 reusv3i 4453 onintrab2im 4511 ordtri2orexmid 4516 setindel 4531 onsucuni2 4557 ordtri2or2exmid 4564 zfregfr 4567 tfi 4575 mosubopt 4685 eqrelrel 4721 xpiindim 4757 opeliunxp2 4760 opelrn 4854 issref 5003 xpmlem 5041 rnxpid 5055 ssxpbm 5056 relcoi2 5151 unixpm 5156 cnviinm 5162 iotanul 5185 funimaexglem 5291 fvelrnb 5555 fvmptssdm 5592 fnfvrnss 5668 fressnfv 5695 fconstfvm 5726 f1mpt 5762 ovprc 5900 fo1stresm 6152 fo2ndresm 6153 spc2ed 6224 opeliunxp2f 6229 reldmtpos 6244 tfrlem5 6305 tfrlem9 6310 tfri2 6357 frecfcllem 6395 frecsuclem 6397 fvmptmap 6675 ixpiinm 6714 ixp0 6721 mptelixpg 6724 ener 6769 domtr 6775 unen 6806 xpf1o 6834 mapen 6836 ss1o0el1o 6902 cardval3ex 7174 distrnqg 7361 nqnq0pi 7412 nqnq0a 7428 nqnq0m 7429 distrnq0 7433 nqprloc 7519 ltexprlemopl 7575 ltexprlemopu 7577 recexre 8509 nn1suc 8909 msqznn 9324 nn0ind 9338 fnn0ind 9340 ublbneg 9584 qreccl 9613 fzo1fzo0n0 10151 elfzom1elp1fzo 10170 fzo0end 10191 fzind2 10207 flqeqceilz 10286 nnsinds 10411 nn0sinds 10412 ser0f 10483 hashfacen 10782 redivap 10849 imdivap 10856 cvg1nlemres 10960 sqrt0 10979 summodclem3 11354 fsump1i 11407 prodf1 11516 cos1bnd 11733 odd2np1 11843 opoe 11865 omoe 11866 opeo 11867 omeo 11868 dfgcd2 11980 gcdmultiplez 11987 dvdssq 11997 algfx 12017 odzval 12206 mul4sq 12357 setsfun0 12463 neipsm 13223 txbas 13327 elcncf1di 13635 reeff1o 13763 sincosq1lem 13815 sincosq2sgn 13817 sincosq4sgn 13819 lgsne0 14008 mul2sq 14021 bdbm1.3ii 14201 |
Copyright terms: Public domain | W3C validator |