Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylbir | GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylbir.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylbir | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 132 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylbir.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3i 199 3ori 1290 19.30dc 1615 nf4r 1659 cbvexv1 1740 cbvexh 1743 equveli 1747 sbequilem 1826 sb5rf 1840 nfsbxy 1930 nfsbxyt 1931 sbcomxyyz 1960 dvelimALT 1998 dvelimfv 1999 dvelimor 2006 mo2n 2042 mo23 2055 2exeu 2106 bm1.1 2150 necon1idc 2389 sbhypf 2775 vtocl2 2781 vtocl3 2782 reu6 2915 rmo2ilem 3040 uneqin 3373 abn0r 3433 inelcm 3469 vdif0im 3474 difrab0eqim 3475 r19.3rm 3497 r19.9rmv 3500 difprsn1 3712 intminss 3849 disjnim 3973 bm1.3ii 4103 intexabim 4131 copsex2g 4224 opelopabt 4240 eusv2nf 4434 reusv3i 4437 onintrab2im 4495 ordtri2orexmid 4500 setindel 4515 onsucuni2 4541 ordtri2or2exmid 4548 zfregfr 4551 tfi 4559 mosubopt 4669 eqrelrel 4705 xpiindim 4741 opeliunxp2 4744 opelrn 4838 issref 4986 xpmlem 5024 rnxpid 5038 ssxpbm 5039 relcoi2 5134 unixpm 5139 cnviinm 5145 iotanul 5168 funimaexglem 5271 fvelrnb 5534 fvmptssdm 5570 fnfvrnss 5645 fressnfv 5672 fconstfvm 5703 f1mpt 5739 ovprc 5877 fo1stresm 6129 fo2ndresm 6130 spc2ed 6201 opeliunxp2f 6206 reldmtpos 6221 tfrlem5 6282 tfrlem9 6287 tfri2 6334 frecfcllem 6372 frecsuclem 6374 fvmptmap 6651 ixpiinm 6690 ixp0 6697 mptelixpg 6700 ener 6745 domtr 6751 unen 6782 xpf1o 6810 mapen 6812 ss1o0el1o 6878 cardval3ex 7141 distrnqg 7328 nqnq0pi 7379 nqnq0a 7395 nqnq0m 7396 distrnq0 7400 nqprloc 7486 ltexprlemopl 7542 ltexprlemopu 7544 recexre 8476 nn1suc 8876 msqznn 9291 nn0ind 9305 fnn0ind 9307 ublbneg 9551 qreccl 9580 fzo1fzo0n0 10118 elfzom1elp1fzo 10137 fzo0end 10158 fzind2 10174 flqeqceilz 10253 nnsinds 10378 nn0sinds 10379 ser0f 10450 hashfacen 10749 redivap 10816 imdivap 10823 cvg1nlemres 10927 sqrt0 10946 summodclem3 11321 fsump1i 11374 prodf1 11483 cos1bnd 11700 odd2np1 11810 opoe 11832 omoe 11833 opeo 11834 omeo 11835 dfgcd2 11947 gcdmultiplez 11954 dvdssq 11964 algfx 11984 odzval 12173 mul4sq 12324 setsfun0 12430 neipsm 12794 txbas 12898 elcncf1di 13206 reeff1o 13334 sincosq1lem 13386 sincosq2sgn 13388 sincosq4sgn 13390 lgsne0 13579 mul2sq 13592 bdbm1.3ii 13773 |
Copyright terms: Public domain | W3C validator |