Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylbir | GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylbir.1 | ⊢ (𝜓 ↔ 𝜑) |
sylbir.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
sylbir | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 132 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylbir.2 | . 2 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3i 199 3ori 1295 19.30dc 1620 nf4r 1664 cbvexv1 1745 cbvexh 1748 equveli 1752 sbequilem 1831 sb5rf 1845 nfsbxy 1935 nfsbxyt 1936 sbcomxyyz 1965 dvelimALT 2003 dvelimfv 2004 dvelimor 2011 mo2n 2047 mo23 2060 2exeu 2111 bm1.1 2155 necon1idc 2393 sbhypf 2779 vtocl2 2785 vtocl3 2786 reu6 2919 rmo2ilem 3044 uneqin 3378 abn0r 3439 inelcm 3475 vdif0im 3480 difrab0eqim 3481 r19.3rm 3503 r19.9rmv 3506 difprsn1 3719 intminss 3856 disjnim 3980 bm1.3ii 4110 intexabim 4138 copsex2g 4231 opelopabt 4247 eusv2nf 4441 reusv3i 4444 onintrab2im 4502 ordtri2orexmid 4507 setindel 4522 onsucuni2 4548 ordtri2or2exmid 4555 zfregfr 4558 tfi 4566 mosubopt 4676 eqrelrel 4712 xpiindim 4748 opeliunxp2 4751 opelrn 4845 issref 4993 xpmlem 5031 rnxpid 5045 ssxpbm 5046 relcoi2 5141 unixpm 5146 cnviinm 5152 iotanul 5175 funimaexglem 5281 fvelrnb 5544 fvmptssdm 5580 fnfvrnss 5656 fressnfv 5683 fconstfvm 5714 f1mpt 5750 ovprc 5888 fo1stresm 6140 fo2ndresm 6141 spc2ed 6212 opeliunxp2f 6217 reldmtpos 6232 tfrlem5 6293 tfrlem9 6298 tfri2 6345 frecfcllem 6383 frecsuclem 6385 fvmptmap 6663 ixpiinm 6702 ixp0 6709 mptelixpg 6712 ener 6757 domtr 6763 unen 6794 xpf1o 6822 mapen 6824 ss1o0el1o 6890 cardval3ex 7162 distrnqg 7349 nqnq0pi 7400 nqnq0a 7416 nqnq0m 7417 distrnq0 7421 nqprloc 7507 ltexprlemopl 7563 ltexprlemopu 7565 recexre 8497 nn1suc 8897 msqznn 9312 nn0ind 9326 fnn0ind 9328 ublbneg 9572 qreccl 9601 fzo1fzo0n0 10139 elfzom1elp1fzo 10158 fzo0end 10179 fzind2 10195 flqeqceilz 10274 nnsinds 10399 nn0sinds 10400 ser0f 10471 hashfacen 10771 redivap 10838 imdivap 10845 cvg1nlemres 10949 sqrt0 10968 summodclem3 11343 fsump1i 11396 prodf1 11505 cos1bnd 11722 odd2np1 11832 opoe 11854 omoe 11855 opeo 11856 omeo 11857 dfgcd2 11969 gcdmultiplez 11976 dvdssq 11986 algfx 12006 odzval 12195 mul4sq 12346 setsfun0 12452 neipsm 12948 txbas 13052 elcncf1di 13360 reeff1o 13488 sincosq1lem 13540 sincosq2sgn 13542 sincosq4sgn 13544 lgsne0 13733 mul2sq 13746 bdbm1.3ii 13926 |
Copyright terms: Public domain | W3C validator |