Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1bbiddc GIF version

Theorem necon1bbiddc 2387
 Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon1bbiddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝜓)))
Assertion
Ref Expression
necon1bbiddc (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝜓𝐴 = 𝐵)))

Proof of Theorem necon1bbiddc
StepHypRef Expression
1 necon1bbiddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝜓)))
2 df-ne 2325 . . . 4 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32bibi1i 227 . . 3 ((𝐴𝐵𝜓) ↔ (¬ 𝐴 = 𝐵𝜓))
41, 3syl6ib 160 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝜓)))
54con1biddc 862 1 (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝜓𝐴 = 𝐵)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 104  DECID wdc 820   = wceq 1332   ≠ wne 2324 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-ne 2325 This theorem is referenced by:  necon2bbiddc  2391
 Copyright terms: Public domain W3C validator