| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfdv | GIF version | ||
| Description: Apply the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| nfdv.1 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | 
| Ref | Expression | 
|---|---|
| nfdv | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) | 
| 3 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |