| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > alrimdv | GIF version | ||
| Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) | 
| Ref | Expression | 
|---|---|
| alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1540 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | alrimdh 1493 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1461 ax-gen 1463 ax-17 1540 | 
| This theorem is referenced by: exmidsssnc 4236 funcnvuni 5327 fliftfun 5843 findcard 6949 findcard2 6950 findcard2s 6951 genprndl 7588 genprndu 7589 seqf1og 10613 bj-inf2vnlem2 15617 | 
| Copyright terms: Public domain | W3C validator |