Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alrimdv | GIF version |
Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-17 1514 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | alrimdh 1467 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1435 ax-gen 1437 ax-17 1514 |
This theorem is referenced by: exmidsssnc 4182 funcnvuni 5257 fliftfun 5764 findcard 6854 findcard2 6855 findcard2s 6856 genprndl 7462 genprndu 7463 bj-inf2vnlem2 13863 |
Copyright terms: Public domain | W3C validator |