HomeHome Intuitionistic Logic Explorer
Theorem List (p. 19 of 127)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1801-1900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorema16nf 1801* If there is only one element in the universe, then everything satisfies . (Contributed by Mario Carneiro, 7-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
 
Theorem2albidv 1802* Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
 
Theorem2exbidv 1803* Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑥𝑦𝜒))
 
Theorem3exbidv 1804* Formula-building rule for 3 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
 
Theorem4exbidv 1805* Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
 
Theorem19.9v 1806* Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.) (Revised by NM, 21-May-2007.)
(∃𝑥𝜑𝜑)
 
Theoremexlimdd 1807 Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → ∃𝑥𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
Theorem19.21v 1808* Special case of Theorem 19.21 of [Margaris] p. 90. Notational convention: We sometimes suffix with "v" the label of a theorem eliminating a hypothesis such as (𝜑 → ∀𝑥𝜑) in 19.21 1527 via the use of distinct variable conditions combined with ax-17 1471. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the distinct variable condition; e.g., euf 1960 derived from df-eu 1958. The "f" stands for "not free in" which is less restrictive than "does not occur in". (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theoremalrimiv 1809* Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       (𝜑 → ∀𝑥𝜓)
 
Theoremalrimivv 1810* Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
(𝜑𝜓)       (𝜑 → ∀𝑥𝑦𝜓)
 
Theoremalrimdv 1811* Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremnfdv 1812* Apply the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theorem2ax17 1813* Quantification of two variables over a formula in which they do not occur. (Contributed by Alan Sare, 12-Apr-2011.)
(𝜑 → ∀𝑥𝑦𝜑)
 
Theoremalimdv 1814* Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 3-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremeximdv 1815* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theorem2alimdv 1816* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-2004.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝑦𝜓 → ∀𝑥𝑦𝜒))
 
Theorem2eximdv 1817* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝜓 → ∃𝑥𝑦𝜒))
 
Theorem19.23v 1818* Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
(∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.23vv 1819* Theorem 19.23 of [Margaris] p. 90 extended to two variables. (Contributed by NM, 10-Aug-2004.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
 
Theoremsb56 1820* Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 1700. (Contributed by NM, 14-Apr-2008.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb6 1821* Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb5 1822* Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsbnv 1823* Version of sbn 1881 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Dec-2017.)
([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
 
Theoremsbanv 1824* Version of sban 1884 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 24-Dec-2017.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
 
Theoremsborv 1825* Version of sbor 1883 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
 
Theoremsbi1v 1826* Forward direction of sbimv 1828. (Contributed by Jim Kingdon, 25-Dec-2017.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsbi2v 1827* Reverse direction of sbimv 1828. (Contributed by Jim Kingdon, 18-Jan-2018.)
(([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
 
Theoremsbimv 1828* Intuitionistic proof of sbim 1882 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Jan-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsblimv 1829* Version of sblim 1886 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 19-Jan-2018.)
(𝜓 → ∀𝑥𝜓)       ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
 
Theorempm11.53 1830* Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
 
Theoremexlimivv 1831* Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝜑𝜓)
 
Theoremexlimdvv 1832* Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝜓𝜒))
 
Theoremexlimddv 1833* Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.)
(𝜑 → ∃𝑥𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
Theorem19.27v 1834* Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 3-Jun-2004.)
(∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.28v 1835* Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)
(∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 
Theorem19.36aiv 1836* Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theorem19.41v 1837* Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.41vv 1838* Theorem 19.41 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 30-Apr-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
 
Theorem19.41vvv 1839* Theorem 19.41 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 30-Apr-1995.)
(∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
 
Theorem19.41vvvv 1840* Theorem 19.41 of [Margaris] p. 90 with 4 quantifiers. (Contributed by FL, 14-Jul-2007.)
(∃𝑤𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑤𝑥𝑦𝑧𝜑𝜓))
 
Theorem19.42v 1841* Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
 
Theoremexdistr 1842* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
 
Theorem19.42vv 1843* Theorem 19.42 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 16-Mar-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
 
Theorem19.42vvv 1844* Theorem 19.42 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 21-Sep-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝑧𝜓))
 
Theorem19.42vvvv 1845* Theorem 19.42 of [Margaris] p. 90 with 4 quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
(∃𝑤𝑥𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑤𝑥𝑦𝑧𝜓))
 
Theoremexdistr2 1846* Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
(∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓))
 
Theorem3exdistr 1847* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)))
 
Theorem4exdistr 1848* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
 
Theoremcbvalv 1849* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexv 1850* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbval2 1851* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2 1852* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbval2v 1853* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2v 1854* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbvald 1855* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 1948. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdh 1856* Deduction used to change bound variables, using implicit substitition, particularly useful in conjunction with dvelim 1948. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 30-Dec-2017.)
(𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvexd 1857* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 1948. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvaldva 1858* Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdva 1859* Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvex4v 1860* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))    &   ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))       (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 
Theoremeean 1861 Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theoremeeanv 1862* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theoremeeeanv 1863* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
 
Theoremee4anv 1864* Rearrange existential quantifiers. (Contributed by NM, 31-Jul-1995.)
(∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
 
Theoremee8anv 1865* Rearrange existential quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
(∃𝑥𝑦𝑧𝑤𝑣𝑢𝑡𝑠(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝑤𝜑 ∧ ∃𝑣𝑢𝑡𝑠𝜓))
 
Theoremnexdv 1866* Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremchvarv 1867* Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by NM, 20-Apr-1994.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremcleljust 1868* When the class variables of set theory are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 1446 with the class variables in wcel 1445. (Contributed by NM, 28-Jan-2004.)
(𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
 
1.4.5  More substitution theorems
 
Theoremhbs1 1869* 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 5-Aug-1993.) (Proof by Jim Kingdon, 16-Dec-2017.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremnfs1v 1870* 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥[𝑦 / 𝑥]𝜑
 
Theoremsbhb 1871* Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by NM, 29-May-2009.)
((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))
 
Theoremhbsbv 1872* This is a version of hbsb 1878 with an extra distinct variable constraint, on 𝑧 and 𝑥. (Contributed by Jim Kingdon, 25-Dec-2017.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfsbxy 1873* Similar to hbsb 1878 but with an extra distinct variable constraint, on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremnfsbxyt 1874* Closed form of nfsbxy 1873. (Contributed by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremsbco2vlem 1875* This is a version of sbco2 1894 where 𝑧 is distinct from 𝑥 and from 𝑦. It is a lemma on the way to proving sbco2v 1876 which only requires that 𝑧 and 𝑥 be distinct. (Contributed by Jim Kingdon, 25-Dec-2017.) Remove one disjoint variable condition. (Revised by Jim Kingdon, 3-Feb-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2v 1876* This is a version of sbco2 1894 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremnfsb 1877* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremhbsb 1878* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 
Theoremequsb3lem 1879* Lemma for equsb3 1880. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧)
 
Theoremequsb3 1880* Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
([𝑥 / 𝑦]𝑦 = 𝑧𝑥 = 𝑧)
 
Theoremsbn 1881 Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
 
Theoremsbim 1882 Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsbor 1883 Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
 
Theoremsban 1884 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
 
Theoremsbrim 1885 Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsblim 1886 Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜓       ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
 
Theoremsb3an 1887 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
 
Theoremsbbi 1888 Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsblbis 1889 Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
 
Theoremsbrbis 1890 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbrbif 1891 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
(𝜒 → ∀𝑥𝜒)    &   ([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsbco2yz 1892* This is a version of sbco2 1894 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 1894 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2h 1893 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2 1894 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2d 1895 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbco2vd 1896* Version of sbco2d 1895 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbco 1897 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco3v 1898* Version of sbco3 1903 with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbcocom 1899 Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
 
Theoremsbcomv 1900* Version of sbcom 1904 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 28-Feb-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12636
  Copyright terms: Public domain < Previous  Next >