HomeHome Intuitionistic Logic Explorer
Theorem List (p. 19 of 152)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1801-1900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbie 1801 Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremsbiev 1802* Conversion of implicit substitution to explicit substitution. Version of sbie 1801 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremequsalv 1803* An equivalence related to implicit substitution. Version of equsal 1737 with a disjoint variable condition. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
1.3.11  Theorems using axiom ax-11
 
Theoremequs5a 1804 A property related to substitution that unlike equs5 1839 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
(∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs5e 1805 A property related to substitution that unlike equs5 1839 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.)
(∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 
Theoremax11e 1806 Analogue to ax-11 1516 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.)
(𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑦𝜑))
 
Theoremax10oe 1807 Quantifier Substitution for existential quantifiers. Analogue to ax10o 1725 but for rather than . (Contributed by Jim Kingdon, 21-Dec-2017.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓))
 
Theoremdrex1 1808 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓))
 
Theoremdrsb1 1809 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
(∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
 
Theoremexdistrfor 1810 Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Jim Kingdon, 25-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑)       (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
 
Theoremsb4a 1811 A version of sb4 1842 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs45f 1812 Two ways of expressing substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 25-Apr-2008.)
(𝜑 → ∀𝑦𝜑)       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb6f 1813 Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 30-Apr-2008.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb5f 1814 Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 18-May-2008.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb4e 1815 One direction of a simplified definition of substitution that unlike sb4 1842 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 
Theoremhbsb2a 1816 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremhbsb2e 1817 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
 
Theoremhbsb3 1818 If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremnfs1 1819 If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑦𝜑       𝑥[𝑦 / 𝑥]𝜑
 
Theoremsbcof2 1820 Version of sbco 1978 where 𝑥 is not free in 𝜑. (Contributed by Jim Kingdon, 28-Dec-2017.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
1.4  Predicate calculus with distinct variables
 
1.4.1  Derive the axiom of distinct variables ax-16
 
Theoremspimv 1821* A version of spim 1748 with a distinct variable requirement instead of a bound-variable hypothesis. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremaev 1822* A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-16 1824. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣)
 
Theoremax16 1823* Theorem showing that ax-16 1824 is redundant if ax-17 1536 is included in the axiom system. The important part of the proof is provided by aev 1822.

See ax16ALT 1869 for an alternate proof that does not require ax-10 1515 or ax12 1522.

This theorem should not be referenced in any proof. Instead, use ax-16 1824 below so that theorems needing ax-16 1824 can be more easily identified. (Contributed by NM, 8-Nov-2006.)

(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Axiomax-16 1824* Axiom of Distinct Variables. The only axiom of predicate calculus requiring that variables be distinct (if we consider ax-17 1536 to be a metatheorem and not an axiom). Axiom scheme C16' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases. It is a somewhat bizarre axiom since the antecedent is always false in set theory, but nonetheless it is technically necessary as you can see from its uses.

This axiom is redundant if we include ax-17 1536; see Theorem ax16 1823.

This axiom is obsolete and should no longer be used. It is proved above as Theorem ax16 1823. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremdveeq2 1825* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 
Theoremdveeq2or 1826* Quantifier introduction when one pair of variables is distinct. Like dveeq2 1825 but connecting 𝑥𝑥 = 𝑦 by a disjunction rather than negation and implication makes the theorem stronger in intuitionistic logic. (Contributed by Jim Kingdon, 1-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
 
TheoremdvelimfALT2 1827* Proof of dvelimf 2025 using dveeq2 1825 (shown as the last hypothesis) instead of ax12 1522. This shows that ax12 1522 could be replaced by dveeq2 1825 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))    &   (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremnd5 1828* A lemma for proving conditionless ZFC axioms. (Contributed by NM, 8-Jan-2002.)
(¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 
Theoremexlimdv 1829* Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremax11v2 1830* Recovery of ax11o 1832 from ax11v 1837 without using ax-11 1516. The hypothesis is even weaker than ax11v 1837, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1832. (Contributed by NM, 2-Feb-2007.)
(𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
Theoremax11a2 1831* Derive ax-11o 1833 from a hypothesis in the form of ax-11 1516. The hypothesis is even weaker than ax-11 1516, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1832. (Contributed by NM, 2-Feb-2007.)
(𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
1.4.2  Derive the obsolete axiom of variable substitution ax-11o
 
Theoremax11o 1832 Derivation of set.mm's original ax-11o 1833 from the shorter ax-11 1516 that has replaced it.

An open problem is whether this theorem can be proved without relying on ax-16 1824 or ax-17 1536.

Normally, ax11o 1832 should be used rather than ax-11o 1833, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)

(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
Axiomax-11o 1833 Axiom ax-11o 1833 ("o" for "old") was the original version of ax-11 1516, before it was discovered (in Jan. 2007) that the shorter ax-11 1516 could replace it. It appears as Axiom scheme C15' in [Megill] p. 448 (p. 16 of the preprint). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases. To understand this theorem more easily, think of "¬ ∀𝑥𝑥 = 𝑦..." as informally meaning "if 𝑥 and 𝑦 are distinct variables, then..." The antecedent becomes false if the same variable is substituted for 𝑥 and 𝑦, ensuring the theorem is sound whenever this is the case. In some later theorems, we call an antecedent of the form ¬ ∀𝑥𝑥 = 𝑦 a "distinctor."

This axiom is redundant, as shown by Theorem ax11o 1832.

This axiom is obsolete and should no longer be used. It is proved above as Theorem ax11o 1832. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
1.4.3  More theorems related to ax-11 and substitution
 
Theoremalbidv 1834* Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theoremexbidv 1835* Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremax11b 1836 A bidirectional version of ax-11o 1833. (Contributed by NM, 30-Jun-2006.)
((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremax11v 1837* This is a version of ax-11o 1833 when the variables are distinct. Axiom (C8) of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.) (Revised by Jim Kingdon, 15-Dec-2017.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremax11ev 1838* Analogue to ax11v 1837 for existential quantification. (Contributed by Jim Kingdon, 9-Jan-2018.)
(𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → 𝜑))
 
Theoremequs5 1839 Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremequs5or 1840 Lemma used in proofs of substitution properties. Like equs5 1839 but, in intuitionistic logic, replacing negation and implication with disjunction makes this a stronger result. (Contributed by Jim Kingdon, 2-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsb3 1841 One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
 
Theoremsb4 1842 One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsb4or 1843 One direction of a simplified definition of substitution when variables are distinct. Similar to sb4 1842 but stronger in intuitionistic logic. (Contributed by Jim Kingdon, 2-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsb4b 1844 Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsb4bor 1845 Simplified definition of substitution when variables are distinct, expressed via disjunction. (Contributed by Jim Kingdon, 18-Mar-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremhbsb2 1846 Bound-variable hypothesis builder for substitution. (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
 
Theoremnfsb2or 1847 Bound-variable hypothesis builder for substitution. Similar to hbsb2 1846 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑)
 
Theoremsbequilem 1848 Propositional logic lemma used in the sbequi 1849 proof. (Contributed by Jim Kingdon, 1-Feb-2018.)
(𝜑 ∨ (𝜓 → (𝜒𝜃)))    &   (𝜏 ∨ (𝜓 → (𝜃𝜂)))       (𝜑 ∨ (𝜏 ∨ (𝜓 → (𝜒𝜂))))
 
Theoremsbequi 1849 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) (Proof modified by Jim Kingdon, 1-Feb-2018.)
(𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))
 
Theoremsbequ 1850 An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
 
Theoremdrsb2 1851 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
 
Theoremspsbe 1852 A specialization theorem, mostly the same as Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 29-Dec-2017.)
([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremspsbim 1853 Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
(∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremspsbbi 1854 Specialization of biconditional. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
(∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbbidh 1855 Deduction substituting both sides of a biconditional. New proofs should use sbbid 1856 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbbid 1856 Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbequ8 1857 Elimination of equality from antecedent after substitution. (Contributed by NM, 5-Aug-1993.) (Proof revised by Jim Kingdon, 20-Jan-2018.)
([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦𝜑))
 
Theoremsbft 1858 Substitution has no effect on a nonfree variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.)
(Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
 
Theoremsbid2h 1859 An identity law for substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 
Theoremsbid2 1860 An identity law for substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑥𝜑       ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 
Theoremsbidm 1861 An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsb5rf 1862 Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑦𝜑)       (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑))
 
Theoremsb6rf 1863 Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑦𝜑)       (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
 
Theoremsb8h 1864 Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
(𝜑 → ∀𝑦𝜑)       (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8eh 1865 Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 15-Jan-2018.)
(𝜑 → ∀𝑦𝜑)       (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8 1866 Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
𝑦𝜑       (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8e 1867 Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
𝑦𝜑       (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 
1.4.4  Predicate calculus with distinct variables (cont.)
 
Theoremax16i 1868* Inference with ax-16 1824 as its conclusion, that does not require ax-10 1515, ax-11 1516, or ax12 1522 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. (Contributed by NM, 20-May-2008.)
(𝑥 = 𝑧 → (𝜑𝜓))    &   (𝜓 → ∀𝑥𝜓)       (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremax16ALT 1869* Version of ax16 1823 that does not require ax-10 1515 or ax12 1522 for its proof. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremspv 1870* Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspimev 1871* Distinct-variable version of spime 1751. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)
 
Theoremspeiv 1872* Inference from existential specialization, using implicit substitition. (Contributed by NM, 19-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜓       𝑥𝜑
 
Theoremequvin 1873* A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
 
Theorema16g 1874* A generalization of Axiom ax-16 1824. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
 
Theorema16gb 1875* A generalization of Axiom ax-16 1824. (Contributed by NM, 5-Aug-1993.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
 
Theorema16nf 1876* If there is only one element in the universe, then everything satisfies . (Contributed by Mario Carneiro, 7-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
 
Theorem2albidv 1877* Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
 
Theorem2exbidv 1878* Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑥𝑦𝜒))
 
Theorem3exbidv 1879* Formula-building rule for 3 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
 
Theorem4exbidv 1880* Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
 
Theorem19.9v 1881* Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.) (Revised by NM, 21-May-2007.)
(∃𝑥𝜑𝜑)
 
Theoremexlimdd 1882 Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → ∃𝑥𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
Theorem19.21v 1883* Special case of Theorem 19.21 of [Margaris] p. 90. Notational convention: We sometimes suffix with "v" the label of a theorem eliminating a hypothesis such as (𝜑 → ∀𝑥𝜑) in 19.21 1593 via the use of distinct variable conditions combined with ax-17 1536. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the distinct variable condition; e.g., euf 2041 derived from df-eu 2039. The "f" stands for "not free in" which is less restrictive than "does not occur in". (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theoremalrimiv 1884* Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       (𝜑 → ∀𝑥𝜓)
 
Theoremalrimivv 1885* Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
(𝜑𝜓)       (𝜑 → ∀𝑥𝑦𝜓)
 
Theoremalrimdv 1886* Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremnfdv 1887* Apply the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theorem2ax17 1888* Quantification of two variables over a formula in which they do not occur. (Contributed by Alan Sare, 12-Apr-2011.)
(𝜑 → ∀𝑥𝑦𝜑)
 
Theoremalimdv 1889* Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 3-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremeximdv 1890* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theorem2alimdv 1891* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-2004.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝑦𝜓 → ∀𝑥𝑦𝜒))
 
Theorem2eximdv 1892* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝜓 → ∃𝑥𝑦𝜒))
 
Theorem19.23v 1893* Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
(∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.23vv 1894* Theorem 19.23 of [Margaris] p. 90 extended to two variables. (Contributed by NM, 10-Aug-2004.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
 
Theoremsb56 1895* Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 1773. (Contributed by NM, 14-Apr-2008.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb6 1896* Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb5 1897* Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsbnv 1898* Version of sbn 1962 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Dec-2017.)
([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
 
Theoremsbanv 1899* Version of sban 1965 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 24-Dec-2017.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
 
Theoremsborv 1900* Version of sbor 1964 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15186
  Copyright terms: Public domain < Previous  Next >