HomeHome Intuitionistic Logic Explorer
Theorem List (p. 19 of 158)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1801-1900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbiedh 1801 Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1804). New proofs should use sbied 1802 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbied 1802 Conversion of implicit substitution to explicit substitution (deduction version of sbie 1805). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbiedv 1803* Conversion of implicit substitution to explicit substitution (deduction version of sbie 1805). (Contributed by NM, 7-Jan-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbieh 1804 Conversion of implicit substitution to explicit substitution. New proofs should use sbie 1805 instead. (Contributed by NM, 30-Jun-1994.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremsbie 1805 Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremsbiev 1806* Conversion of implicit substitution to explicit substitution. Version of sbie 1805 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremequsalv 1807* An equivalence related to implicit substitution. Version of equsal 1741 with a disjoint variable condition. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
1.3.11  Theorems using axiom ax-11
 
Theoremequs5a 1808 A property related to substitution that unlike equs5 1843 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
(∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs5e 1809 A property related to substitution that unlike equs5 1843 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.)
(∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 
Theoremax11e 1810 Analogue to ax-11 1520 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.)
(𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑦𝜑))
 
Theoremax10oe 1811 Quantifier Substitution for existential quantifiers. Analogue to ax10o 1729 but for rather than . (Contributed by Jim Kingdon, 21-Dec-2017.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓))
 
Theoremdrex1 1812 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓))
 
Theoremdrsb1 1813 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
(∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
 
Theoremexdistrfor 1814 Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Jim Kingdon, 25-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑)       (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
 
Theoremsb4a 1815 A version of sb4 1846 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs45f 1816 Two ways of expressing substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 25-Apr-2008.)
(𝜑 → ∀𝑦𝜑)       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb6f 1817 Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 30-Apr-2008.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb5f 1818 Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 18-May-2008.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb4e 1819 One direction of a simplified definition of substitution that unlike sb4 1846 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 
Theoremhbsb2a 1820 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremhbsb2e 1821 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
 
Theoremhbsb3 1822 If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremnfs1 1823 If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑦𝜑       𝑥[𝑦 / 𝑥]𝜑
 
Theoremsbcof2 1824 Version of sbco 1987 where 𝑥 is not free in 𝜑. (Contributed by Jim Kingdon, 28-Dec-2017.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
1.4  Predicate calculus with distinct variables
 
1.4.1  Derive the axiom of distinct variables ax-16
 
Theoremspimv 1825* A version of spim 1752 with a distinct variable requirement instead of a bound-variable hypothesis. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremaev 1826* A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-16 1828. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣)
 
Theoremax16 1827* Theorem showing that ax-16 1828 is redundant if ax-17 1540 is included in the axiom system. The important part of the proof is provided by aev 1826.

See ax16ALT 1873 for an alternate proof that does not require ax-10 1519 or ax12 1526.

This theorem should not be referenced in any proof. Instead, use ax-16 1828 below so that theorems needing ax-16 1828 can be more easily identified. (Contributed by NM, 8-Nov-2006.)

(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Axiomax-16 1828* Axiom of Distinct Variables. The only axiom of predicate calculus requiring that variables be distinct (if we consider ax-17 1540 to be a metatheorem and not an axiom). Axiom scheme C16' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases. It is a somewhat bizarre axiom since the antecedent is always false in set theory, but nonetheless it is technically necessary as you can see from its uses.

This axiom is redundant if we include ax-17 1540; see Theorem ax16 1827.

This axiom is obsolete and should no longer be used. It is proved above as Theorem ax16 1827. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremdveeq2 1829* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 
Theoremdveeq2or 1830* Quantifier introduction when one pair of variables is distinct. Like dveeq2 1829 but connecting 𝑥𝑥 = 𝑦 by a disjunction rather than negation and implication makes the theorem stronger in intuitionistic logic. (Contributed by Jim Kingdon, 1-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
 
TheoremdvelimfALT2 1831* Proof of dvelimf 2034 using dveeq2 1829 (shown as the last hypothesis) instead of ax12 1526. This shows that ax12 1526 could be replaced by dveeq2 1829 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))    &   (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremnd5 1832* A lemma for proving conditionless ZFC axioms. (Contributed by NM, 8-Jan-2002.)
(¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
 
Theoremexlimdv 1833* Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremax11v2 1834* Recovery of ax11o 1836 from ax11v 1841 without using ax-11 1520. The hypothesis is even weaker than ax11v 1841, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1836. (Contributed by NM, 2-Feb-2007.)
(𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
Theoremax11a2 1835* Derive ax-11o 1837 from a hypothesis in the form of ax-11 1520. The hypothesis is even weaker than ax-11 1520, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1836. (Contributed by NM, 2-Feb-2007.)
(𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
1.4.2  Derive the obsolete axiom of variable substitution ax-11o
 
Theoremax11o 1836 Derivation of set.mm's original ax-11o 1837 from the shorter ax-11 1520 that has replaced it.

An open problem is whether this theorem can be proved without relying on ax-16 1828 or ax-17 1540.

Normally, ax11o 1836 should be used rather than ax-11o 1837, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)

(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
Axiomax-11o 1837 Axiom ax-11o 1837 ("o" for "old") was the original version of ax-11 1520, before it was discovered (in Jan. 2007) that the shorter ax-11 1520 could replace it. It appears as Axiom scheme C15' in [Megill] p. 448 (p. 16 of the preprint). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases. To understand this theorem more easily, think of "¬ ∀𝑥𝑥 = 𝑦..." as informally meaning "if 𝑥 and 𝑦 are distinct variables, then..." The antecedent becomes false if the same variable is substituted for 𝑥 and 𝑦, ensuring the theorem is sound whenever this is the case. In some later theorems, we call an antecedent of the form ¬ ∀𝑥𝑥 = 𝑦 a "distinctor."

This axiom is redundant, as shown by Theorem ax11o 1836.

This axiom is obsolete and should no longer be used. It is proved above as Theorem ax11o 1836. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
1.4.3  More theorems related to ax-11 and substitution
 
Theoremalbidv 1838* Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theoremexbidv 1839* Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremax11b 1840 A bidirectional version of ax-11o 1837. (Contributed by NM, 30-Jun-2006.)
((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremax11v 1841* This is a version of ax-11o 1837 when the variables are distinct. Axiom (C8) of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.) (Revised by Jim Kingdon, 15-Dec-2017.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremax11ev 1842* Analogue to ax11v 1841 for existential quantification. (Contributed by Jim Kingdon, 9-Jan-2018.)
(𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → 𝜑))
 
Theoremequs5 1843 Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremequs5or 1844 Lemma used in proofs of substitution properties. Like equs5 1843 but, in intuitionistic logic, replacing negation and implication with disjunction makes this a stronger result. (Contributed by Jim Kingdon, 2-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsb3 1845 One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
 
Theoremsb4 1846 One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsb4or 1847 One direction of a simplified definition of substitution when variables are distinct. Similar to sb4 1846 but stronger in intuitionistic logic. (Contributed by Jim Kingdon, 2-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsb4b 1848 Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsb4bor 1849 Simplified definition of substitution when variables are distinct, expressed via disjunction. (Contributed by Jim Kingdon, 18-Mar-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremhbsb2 1850 Bound-variable hypothesis builder for substitution. (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
 
Theoremnfsb2or 1851 Bound-variable hypothesis builder for substitution. Similar to hbsb2 1850 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥[𝑦 / 𝑥]𝜑)
 
Theoremsbequilem 1852 Propositional logic lemma used in the sbequi 1853 proof. (Contributed by Jim Kingdon, 1-Feb-2018.)
(𝜑 ∨ (𝜓 → (𝜒𝜃)))    &   (𝜏 ∨ (𝜓 → (𝜃𝜂)))       (𝜑 ∨ (𝜏 ∨ (𝜓 → (𝜒𝜂))))
 
Theoremsbequi 1853 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) (Proof modified by Jim Kingdon, 1-Feb-2018.)
(𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))
 
Theoremsbequ 1854 An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
 
Theoremdrsb2 1855 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
 
Theoremspsbe 1856 A specialization theorem, mostly the same as Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 29-Dec-2017.)
([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremspsbim 1857 Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
(∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremspsbbi 1858 Specialization of biconditional. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
(∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbbidh 1859 Deduction substituting both sides of a biconditional. New proofs should use sbbid 1860 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbbid 1860 Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbequ8 1861 Elimination of equality from antecedent after substitution. (Contributed by NM, 5-Aug-1993.) (Proof revised by Jim Kingdon, 20-Jan-2018.)
([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦𝜑))
 
Theoremsbft 1862 Substitution has no effect on a nonfree variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.)
(Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
 
Theoremsbid2h 1863 An identity law for substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 
Theoremsbid2 1864 An identity law for substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑥𝜑       ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 
Theoremsbidm 1865 An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsb5rf 1866 Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑦𝜑)       (𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ [𝑦 / 𝑥]𝜑))
 
Theoremsb6rf 1867 Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑦𝜑)       (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
 
Theoremsb8h 1868 Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
(𝜑 → ∀𝑦𝜑)       (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8eh 1869 Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 15-Jan-2018.)
(𝜑 → ∀𝑦𝜑)       (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8 1870 Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
𝑦𝜑       (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8e 1871 Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
𝑦𝜑       (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 
1.4.4  Predicate calculus with distinct variables (cont.)
 
Theoremax16i 1872* Inference with ax-16 1828 as its conclusion, that does not require ax-10 1519, ax-11 1520, or ax12 1526 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. (Contributed by NM, 20-May-2008.)
(𝑥 = 𝑧 → (𝜑𝜓))    &   (𝜓 → ∀𝑥𝜓)       (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremax16ALT 1873* Version of ax16 1827 that does not require ax-10 1519 or ax12 1526 for its proof. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 
Theoremspv 1874* Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspimev 1875* Distinct-variable version of spime 1755. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)
 
Theoremspeiv 1876* Inference from existential specialization, using implicit substitition. (Contributed by NM, 19-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜓       𝑥𝜑
 
Theoremequvin 1877* A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
 
Theorema16g 1878* A generalization of Axiom ax-16 1828. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
 
Theorema16gb 1879* A generalization of Axiom ax-16 1828. (Contributed by NM, 5-Aug-1993.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
 
Theorema16nf 1880* If there is only one element in the universe, then everything satisfies . (Contributed by Mario Carneiro, 7-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
 
Theorem2albidv 1881* Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝑦𝜓 ↔ ∀𝑥𝑦𝜒))
 
Theorem2exbidv 1882* Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑥𝑦𝜒))
 
Theorem3exbidv 1883* Formula-building rule for 3 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝑧𝜓 ↔ ∃𝑥𝑦𝑧𝜒))
 
Theorem4exbidv 1884* Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
 
Theorem19.9v 1885* Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.) (Revised by NM, 21-May-2007.)
(∃𝑥𝜑𝜑)
 
Theoremexlimdd 1886 Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → ∃𝑥𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
Theorem19.21v 1887* Special case of Theorem 19.21 of [Margaris] p. 90. Notational convention: We sometimes suffix with "v" the label of a theorem eliminating a hypothesis such as (𝜑 → ∀𝑥𝜑) in 19.21 1597 via the use of distinct variable conditions combined with ax-17 1540. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the distinct variable condition; e.g., euf 2050 derived from df-eu 2048. The "f" stands for "not free in" which is less restrictive than "does not occur in". (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
 
Theoremalrimiv 1888* Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       (𝜑 → ∀𝑥𝜓)
 
Theoremalrimivv 1889* Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
(𝜑𝜓)       (𝜑 → ∀𝑥𝑦𝜓)
 
Theoremalrimdv 1890* Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremnfdv 1891* Apply the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theorem2ax17 1892* Quantification of two variables over a formula in which they do not occur. (Contributed by Alan Sare, 12-Apr-2011.)
(𝜑 → ∀𝑥𝑦𝜑)
 
Theoremalimdv 1893* Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 3-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremeximdv 1894* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theorem2alimdv 1895* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-2004.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝑦𝜓 → ∀𝑥𝑦𝜒))
 
Theorem2eximdv 1896* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝜓 → ∃𝑥𝑦𝜒))
 
Theorem19.23v 1897* Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
(∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.23vv 1898* Theorem 19.23 of [Margaris] p. 90 extended to two variables. (Contributed by NM, 10-Aug-2004.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
 
Theoremsbbidv 1899* Deduction substituting both sides of a biconditional, with 𝜑 and 𝑥 disjoint. See also sbbid 1860. (Contributed by Wolf Lammen, 6-May-2023.) (Proof shortened by Steven Nguyen, 6-Jul-2023.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒))
 
Theoremsb56 1900* Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 1777. (Contributed by NM, 14-Apr-2008.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >