| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > ss1oel2o | GIF version | ||
| Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4281 which more directly illustrates the contrast with el2oss1o 6587. (Contributed by Jim Kingdon, 8-Aug-2022.) |
| Ref | Expression |
|---|---|
| ss1oel2o | ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid01 4281 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
| 2 | df1o2 6573 | . . . . 5 ⊢ 1o = {∅} | |
| 3 | 2 | sseq2i 3251 | . . . 4 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
| 4 | df2o2 6575 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
| 5 | 4 | eleq2i 2296 | . . . . 5 ⊢ (𝑥 ∈ 2o ↔ 𝑥 ∈ {∅, {∅}}) |
| 6 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elpr 3687 | . . . . 5 ⊢ (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 8 | 5, 7 | bitri 184 | . . . 4 ⊢ (𝑥 ∈ 2o ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 9 | 3, 8 | imbi12i 239 | . . 3 ⊢ ((𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 10 | 9 | albii 1516 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 11 | 1, 10 | bitr4i 187 | 1 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 {csn 3666 {cpr 3667 EXMIDwem 4277 1oc1o 6553 2oc2o 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-exmid 4278 df-suc 4461 df-1o 6560 df-2o 6561 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |