| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > ss1oel2o | GIF version | ||
| Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4250 which more directly illustrates the contrast with el2oss1o 6542. (Contributed by Jim Kingdon, 8-Aug-2022.) |
| Ref | Expression |
|---|---|
| ss1oel2o | ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid01 4250 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
| 2 | df1o2 6528 | . . . . 5 ⊢ 1o = {∅} | |
| 3 | 2 | sseq2i 3224 | . . . 4 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
| 4 | df2o2 6530 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
| 5 | 4 | eleq2i 2273 | . . . . 5 ⊢ (𝑥 ∈ 2o ↔ 𝑥 ∈ {∅, {∅}}) |
| 6 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elpr 3659 | . . . . 5 ⊢ (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 8 | 5, 7 | bitri 184 | . . . 4 ⊢ (𝑥 ∈ 2o ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 9 | 3, 8 | imbi12i 239 | . . 3 ⊢ ((𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 10 | 9 | albii 1494 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 11 | 1, 10 | bitr4i 187 | 1 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 ∀wal 1371 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ∅c0 3464 {csn 3638 {cpr 3639 EXMIDwem 4246 1oc1o 6508 2oc2o 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4178 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-pr 3645 df-exmid 4247 df-suc 4426 df-1o 6515 df-2o 6516 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |