![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > ss1oel2o | GIF version |
Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4200 which more directly illustrates the contrast with el2oss1o 6446. (Contributed by Jim Kingdon, 8-Aug-2022.) |
Ref | Expression |
---|---|
ss1oel2o | ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid01 4200 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
2 | df1o2 6432 | . . . . 5 ⊢ 1o = {∅} | |
3 | 2 | sseq2i 3184 | . . . 4 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
4 | df2o2 6434 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
5 | 4 | eleq2i 2244 | . . . . 5 ⊢ (𝑥 ∈ 2o ↔ 𝑥 ∈ {∅, {∅}}) |
6 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 6 | elpr 3615 | . . . . 5 ⊢ (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
8 | 5, 7 | bitri 184 | . . . 4 ⊢ (𝑥 ∈ 2o ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
9 | 3, 8 | imbi12i 239 | . . 3 ⊢ ((𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
10 | 9 | albii 1470 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
11 | 1, 10 | bitr4i 187 | 1 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 ∅c0 3424 {csn 3594 {cpr 3595 EXMIDwem 4196 1oc1o 6412 2oc2o 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4131 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-pr 3601 df-exmid 4197 df-suc 4373 df-1o 6419 df-2o 6420 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |