Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ss1oel2o GIF version

Theorem ss1oel2o 15638
Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4231 which more directly illustrates the contrast with el2oss1o 6501. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
ss1oel2o (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o𝑥 ∈ 2o))

Proof of Theorem ss1oel2o
StepHypRef Expression
1 exmid01 4231 . 2 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2 df1o2 6487 . . . . 5 1o = {∅}
32sseq2i 3210 . . . 4 (𝑥 ⊆ 1o𝑥 ⊆ {∅})
4 df2o2 6489 . . . . . 6 2o = {∅, {∅}}
54eleq2i 2263 . . . . 5 (𝑥 ∈ 2o𝑥 ∈ {∅, {∅}})
6 vex 2766 . . . . . 6 𝑥 ∈ V
76elpr 3643 . . . . 5 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
85, 7bitri 184 . . . 4 (𝑥 ∈ 2o ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
93, 8imbi12i 239 . . 3 ((𝑥 ⊆ 1o𝑥 ∈ 2o) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
109albii 1484 . 2 (∀𝑥(𝑥 ⊆ 1o𝑥 ∈ 2o) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
111, 10bitr4i 187 1 (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o𝑥 ∈ 2o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2167  wss 3157  c0 3450  {csn 3622  {cpr 3623  EXMIDwem 4227  1oc1o 6467  2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-exmid 4228  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator