| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > ss1oel2o | GIF version | ||
| Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4231 which more directly illustrates the contrast with el2oss1o 6501. (Contributed by Jim Kingdon, 8-Aug-2022.) |
| Ref | Expression |
|---|---|
| ss1oel2o | ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid01 4231 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
| 2 | df1o2 6487 | . . . . 5 ⊢ 1o = {∅} | |
| 3 | 2 | sseq2i 3210 | . . . 4 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
| 4 | df2o2 6489 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
| 5 | 4 | eleq2i 2263 | . . . . 5 ⊢ (𝑥 ∈ 2o ↔ 𝑥 ∈ {∅, {∅}}) |
| 6 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elpr 3643 | . . . . 5 ⊢ (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 8 | 5, 7 | bitri 184 | . . . 4 ⊢ (𝑥 ∈ 2o ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 9 | 3, 8 | imbi12i 239 | . . 3 ⊢ ((𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 10 | 9 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 11 | 1, 10 | bitr4i 187 | 1 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3450 {csn 3622 {cpr 3623 EXMIDwem 4227 1oc1o 6467 2oc2o 6468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-exmid 4228 df-suc 4406 df-1o 6474 df-2o 6475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |