![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > ss1oel2o | GIF version |
Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4227 which more directly illustrates the contrast with el2oss1o 6496. (Contributed by Jim Kingdon, 8-Aug-2022.) |
Ref | Expression |
---|---|
ss1oel2o | ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid01 4227 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
2 | df1o2 6482 | . . . . 5 ⊢ 1o = {∅} | |
3 | 2 | sseq2i 3206 | . . . 4 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
4 | df2o2 6484 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
5 | 4 | eleq2i 2260 | . . . . 5 ⊢ (𝑥 ∈ 2o ↔ 𝑥 ∈ {∅, {∅}}) |
6 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 6 | elpr 3639 | . . . . 5 ⊢ (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
8 | 5, 7 | bitri 184 | . . . 4 ⊢ (𝑥 ∈ 2o ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
9 | 3, 8 | imbi12i 239 | . . 3 ⊢ ((𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
10 | 9 | albii 1481 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
11 | 1, 10 | bitr4i 187 | 1 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ∅c0 3446 {csn 3618 {cpr 3619 EXMIDwem 4223 1oc1o 6462 2oc2o 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-pr 3625 df-exmid 4224 df-suc 4402 df-1o 6469 df-2o 6470 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |