Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > ss1oel2o | GIF version |
Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4177 which more directly illustrates the contrast with el2oss1o 6411. (Contributed by Jim Kingdon, 8-Aug-2022.) |
Ref | Expression |
---|---|
ss1oel2o | ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid01 4177 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
2 | df1o2 6397 | . . . . 5 ⊢ 1o = {∅} | |
3 | 2 | sseq2i 3169 | . . . 4 ⊢ (𝑥 ⊆ 1o ↔ 𝑥 ⊆ {∅}) |
4 | df2o2 6399 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
5 | 4 | eleq2i 2233 | . . . . 5 ⊢ (𝑥 ∈ 2o ↔ 𝑥 ∈ {∅, {∅}}) |
6 | vex 2729 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 6 | elpr 3597 | . . . . 5 ⊢ (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
8 | 5, 7 | bitri 183 | . . . 4 ⊢ (𝑥 ∈ 2o ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
9 | 3, 8 | imbi12i 238 | . . 3 ⊢ ((𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
10 | 9 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
11 | 1, 10 | bitr4i 186 | 1 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ 1o → 𝑥 ∈ 2o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 ∅c0 3409 {csn 3576 {cpr 3577 EXMIDwem 4173 1oc1o 6377 2oc2o 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-exmid 4174 df-suc 4349 df-1o 6384 df-2o 6385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |