ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnexmid GIF version

Theorem nnexmid 854
Description: Double negation of decidability of a formula. See also comment of nndc 855 to avoid a pitfall that could come from the label "nnexmid". This theorem can also be proved from bj-nnor 16008 as in bj-nndcALT 16032. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
nnexmid ¬ ¬ (𝜑 ∨ ¬ 𝜑)

Proof of Theorem nnexmid
StepHypRef Expression
1 pm3.24 697 . 2 ¬ (¬ 𝜑 ∧ ¬ ¬ 𝜑)
2 ioran 756 . 2 (¬ (𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑 ∧ ¬ ¬ 𝜑))
31, 2mtbir 675 1 ¬ ¬ (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nndc  855  dcfromnotnotr  1470  dcfromcon  1471  exmid1stab  4271
  Copyright terms: Public domain W3C validator