ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnexmid GIF version

Theorem nnexmid 850
Description: Double negation of decidability of a formula. See also comment of nndc 851 to avoid a pitfall that could come from the label "nnexmid". This theorem can also be proved from bj-nnor 14489 as in bj-nndcALT 14513. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
nnexmid ¬ ¬ (𝜑 ∨ ¬ 𝜑)

Proof of Theorem nnexmid
StepHypRef Expression
1 pm3.24 693 . 2 ¬ (¬ 𝜑 ∧ ¬ ¬ 𝜑)
2 ioran 752 . 2 (¬ (𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑 ∧ ¬ ¬ 𝜑))
31, 2mtbir 671 1 ¬ ¬ (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nndc  851  exmid1stab  4209
  Copyright terms: Public domain W3C validator