ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.65i GIF version

Theorem pm2.65i 603
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
Hypotheses
Ref Expression
pm2.65i.1 (𝜑𝜓)
pm2.65i.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
pm2.65i ¬ 𝜑

Proof of Theorem pm2.65i
StepHypRef Expression
1 pm2.65i.2 . . 3 (𝜑 → ¬ 𝜓)
2 pm2.65i.1 . . 3 (𝜑𝜓)
31, 2nsyl3 591 . 2 (𝜑 → ¬ 𝜑)
4 pm2.01 581 . 2 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)
53, 4ax-mp 7 1 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in1 579  ax-in2 580
This theorem is referenced by:  mt2  604  mto  623  pm5.19  657  noel  3288  0nelop  4066  elirr  4347  en2lp  4360  soirri  4813  0neqopab  5676  fzp1disj  9461  fzonel  9536  fzouzdisj  9556
  Copyright terms: Public domain W3C validator