![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.65i | GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | nsyl3 627 | . 2 ⊢ (𝜑 → ¬ 𝜑) |
4 | pm2.01 617 | . 2 ⊢ ((𝜑 → ¬ 𝜑) → ¬ 𝜑) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: mt2 641 mto 663 pm5.19 707 noel 3451 0nelop 4278 elirr 4574 en2lp 4587 soirri 5061 canth 5872 0neqopab 5964 fzp1disj 10149 fzonel 10230 fzouzdisj 10250 4sqlem17 12548 lgsval2lem 15167 bj-imnimnn 15300 nnnotnotr 15552 |
Copyright terms: Public domain | W3C validator |