| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.65i | GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl3 629 | . 2 ⊢ (𝜑 → ¬ 𝜑) |
| 4 | pm2.01 619 | . 2 ⊢ ((𝜑 → ¬ 𝜑) → ¬ 𝜑) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mt2 643 mto 666 pm5.19 711 noel 3495 0nelop 4334 elirr 4633 en2lp 4646 soirri 5123 canth 5958 0neqopab 6055 fzp1disj 10284 fzonel 10365 fzouzdisj 10386 4sqlem17 12938 lgsval2lem 15697 bj-imnimnn 16126 nnnotnotr 16377 |
| Copyright terms: Public domain | W3C validator |