ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.65i GIF version

Theorem pm2.65i 642
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
Hypotheses
Ref Expression
pm2.65i.1 (𝜑𝜓)
pm2.65i.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
pm2.65i ¬ 𝜑

Proof of Theorem pm2.65i
StepHypRef Expression
1 pm2.65i.2 . . 3 (𝜑 → ¬ 𝜓)
2 pm2.65i.1 . . 3 (𝜑𝜓)
31, 2nsyl3 629 . 2 (𝜑 → ¬ 𝜑)
4 pm2.01 619 . 2 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)
53, 4ax-mp 5 1 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 617  ax-in2 618
This theorem is referenced by:  mt2  643  mto  666  pm5.19  711  noel  3495  0nelop  4334  elirr  4633  en2lp  4646  soirri  5123  canth  5958  0neqopab  6055  fzp1disj  10284  fzonel  10365  fzouzdisj  10386  4sqlem17  12938  lgsval2lem  15697  bj-imnimnn  16126  nnnotnotr  16377
  Copyright terms: Public domain W3C validator