ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.65i GIF version

Theorem pm2.65i 640
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.)
Hypotheses
Ref Expression
pm2.65i.1 (𝜑𝜓)
pm2.65i.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
pm2.65i ¬ 𝜑

Proof of Theorem pm2.65i
StepHypRef Expression
1 pm2.65i.2 . . 3 (𝜑 → ¬ 𝜓)
2 pm2.65i.1 . . 3 (𝜑𝜓)
31, 2nsyl3 627 . 2 (𝜑 → ¬ 𝜑)
4 pm2.01 617 . 2 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)
53, 4ax-mp 5 1 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 615  ax-in2 616
This theorem is referenced by:  mt2  641  mto  664  pm5.19  708  noel  3465  0nelop  4296  elirr  4593  en2lp  4606  soirri  5082  canth  5904  0neqopab  5997  fzp1disj  10209  fzonel  10290  fzouzdisj  10311  4sqlem17  12774  lgsval2lem  15531  bj-imnimnn  15748  nnnotnotr  16000
  Copyright terms: Public domain W3C validator