| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.65i | GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl3 627 | . 2 ⊢ (𝜑 → ¬ 𝜑) |
| 4 | pm2.01 617 | . 2 ⊢ ((𝜑 → ¬ 𝜑) → ¬ 𝜑) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2 641 mto 664 pm5.19 708 noel 3465 0nelop 4296 elirr 4593 en2lp 4606 soirri 5082 canth 5904 0neqopab 5997 fzp1disj 10209 fzonel 10290 fzouzdisj 10311 4sqlem17 12774 lgsval2lem 15531 bj-imnimnn 15748 nnnotnotr 16000 |
| Copyright terms: Public domain | W3C validator |