| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.65i | GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl3 627 | . 2 ⊢ (𝜑 → ¬ 𝜑) |
| 4 | pm2.01 617 | . 2 ⊢ ((𝜑 → ¬ 𝜑) → ¬ 𝜑) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2 641 mto 663 pm5.19 707 noel 3454 0nelop 4281 elirr 4577 en2lp 4590 soirri 5064 canth 5875 0neqopab 5967 fzp1disj 10155 fzonel 10236 fzouzdisj 10256 4sqlem17 12576 lgsval2lem 15251 bj-imnimnn 15384 nnnotnotr 15636 |
| Copyright terms: Public domain | W3C validator |