| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.65i | GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl3 629 | . 2 ⊢ (𝜑 → ¬ 𝜑) |
| 4 | pm2.01 619 | . 2 ⊢ ((𝜑 → ¬ 𝜑) → ¬ 𝜑) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mt2 643 mto 666 pm5.19 710 noel 3475 0nelop 4313 elirr 4610 en2lp 4623 soirri 5099 canth 5925 0neqopab 6020 fzp1disj 10244 fzonel 10325 fzouzdisj 10346 4sqlem17 12896 lgsval2lem 15654 bj-imnimnn 16012 nnnotnotr 16263 |
| Copyright terms: Public domain | W3C validator |