ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  or42 GIF version

Theorem or42 767
Description: Rearrangement of 4 disjuncts. (Contributed by NM, 10-Jan-2005.)
Assertion
Ref Expression
or42 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜃𝜓)))

Proof of Theorem or42
StepHypRef Expression
1 or4 766 . 2 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜓𝜃)))
2 orcom 723 . . 3 ((𝜓𝜃) ↔ (𝜃𝜓))
32orbi2i 757 . 2 (((𝜑𝜒) ∨ (𝜓𝜃)) ↔ ((𝜑𝜒) ∨ (𝜃𝜓)))
41, 3bitri 183 1 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜃𝜓)))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  reapcotr  8517
  Copyright terms: Public domain W3C validator