Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > or42 | GIF version |
Description: Rearrangement of 4 disjuncts. (Contributed by NM, 10-Jan-2005.) |
Ref | Expression |
---|---|
or42 | ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜃 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | or4 761 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃))) | |
2 | orcom 718 | . . 3 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
3 | 2 | orbi2i 752 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜃 ∨ 𝜓))) |
4 | 1, 3 | bitri 183 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜃 ∨ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: reapcotr 8467 |
Copyright terms: Public domain | W3C validator |