![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orcom | GIF version |
Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
Ref | Expression |
---|---|
orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 727 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
2 | pm1.4 727 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orcomd 729 orbi1i 763 orass 767 or32 770 or42 772 orbi1d 791 pm5.61 794 oranabs 815 ordir 817 pm2.1dc 837 notnotrdc 843 dcnnOLD 849 pm5.17dc 904 pm5.7dc 954 dn1dc 960 pm5.75 962 3orrot 984 3orcomb 987 excxor 1378 xorcom 1388 19.33b2 1629 nf4dc 1670 nf4r 1671 19.31r 1681 dveeq2 1815 sbequilem 1838 dvelimALT 2010 dvelimfv 2011 dvelimor 2018 eueq2dc 2911 uncom 3280 reuun2 3419 prel12 3772 exmid01 4199 exmidsssnc 4204 ordtriexmid 4521 ordtri2orexmid 4523 ontr2exmid 4525 onsucsssucexmid 4527 ordsoexmid 4562 ordtri2or2exmid 4571 cnvsom 5173 fununi 5285 frec0g 6398 frecabcl 6400 frecsuclem 6407 swoer 6563 inffiexmid 6906 exmidontriimlem1 7220 enq0tr 7433 letr 8040 reapmul1 8552 reapneg 8554 reapcotr 8555 remulext1 8556 apsym 8563 mulext1 8569 elznn0nn 9267 elznn0 9268 zapne 9327 nneoor 9355 nn01to3 9617 ltxr 9775 xrletr 9808 maxclpr 11231 minclpr 11245 odd2np1lem 11877 lcmcom 12064 dvdsprime 12122 coprm 12144 bdbl 14006 cos11 14277 lgsdir2lem4 14435 subctctexmid 14753 |
Copyright terms: Public domain | W3C validator |