| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orcom | GIF version | ||
| Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
| Ref | Expression |
|---|---|
| orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 732 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
| 2 | pm1.4 732 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orcomd 734 orbi1i 768 orass 772 or32 775 or42 777 orbi1d 796 pm5.61 799 oranabs 820 ordir 822 pm2.1dc 842 notnotrdc 848 dcnnOLD 854 pm5.17dc 909 pm5.7dc 960 dn1dc 966 pm5.75 968 3orrot 1008 3orcomb 1011 excxor 1420 xorcom 1430 19.33b2 1675 nf4dc 1716 nf4r 1717 19.31r 1727 dveeq2 1861 sbequilem 1884 dvelimALT 2061 dvelimfv 2062 dvelimor 2069 eueq2dc 2976 uncom 3348 reuun2 3487 prel12 3849 exmid01 4282 exmidsssnc 4287 ordtriexmid 4613 ordtri2orexmid 4615 ontr2exmid 4617 onsucsssucexmid 4619 ordsoexmid 4654 ordtri2or2exmid 4663 cnvsom 5272 fununi 5389 frec0g 6549 frecabcl 6551 frecsuclem 6558 swoer 6716 inffiexmid 7076 exmidontriimlem1 7411 enq0tr 7629 letr 8237 reapmul1 8750 reapneg 8752 reapcotr 8753 remulext1 8754 apsym 8761 mulext1 8767 elznn0nn 9468 elznn0 9469 zapne 9529 nneoor 9557 nn01to3 9820 ltxr 9979 xrletr 10012 swrdnd 11199 maxclpr 11741 minclpr 11756 odd2np1lem 12391 lcmcom 12594 dvdsprime 12652 coprm 12674 opprdomnbg 14246 bdbl 15185 cos11 15535 lgsdir2lem4 15718 subctctexmid 16395 |
| Copyright terms: Public domain | W3C validator |