| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orcom | GIF version | ||
| Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
| Ref | Expression |
|---|---|
| orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 729 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
| 2 | pm1.4 729 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orcomd 731 orbi1i 765 orass 769 or32 772 or42 774 orbi1d 793 pm5.61 796 oranabs 817 ordir 819 pm2.1dc 839 notnotrdc 845 dcnnOLD 851 pm5.17dc 906 pm5.7dc 957 dn1dc 963 pm5.75 965 3orrot 987 3orcomb 990 excxor 1398 xorcom 1408 19.33b2 1653 nf4dc 1694 nf4r 1695 19.31r 1705 dveeq2 1839 sbequilem 1862 dvelimALT 2039 dvelimfv 2040 dvelimor 2047 eueq2dc 2948 uncom 3319 reuun2 3458 prel12 3815 exmid01 4247 exmidsssnc 4252 ordtriexmid 4574 ordtri2orexmid 4576 ontr2exmid 4578 onsucsssucexmid 4580 ordsoexmid 4615 ordtri2or2exmid 4624 cnvsom 5232 fununi 5348 frec0g 6493 frecabcl 6495 frecsuclem 6502 swoer 6658 inffiexmid 7015 exmidontriimlem1 7346 enq0tr 7560 letr 8168 reapmul1 8681 reapneg 8683 reapcotr 8684 remulext1 8685 apsym 8692 mulext1 8698 elznn0nn 9399 elznn0 9400 zapne 9460 nneoor 9488 nn01to3 9751 ltxr 9910 xrletr 9943 swrdnd 11126 maxclpr 11583 minclpr 11598 odd2np1lem 12233 lcmcom 12436 dvdsprime 12494 coprm 12516 opprdomnbg 14086 bdbl 15025 cos11 15375 lgsdir2lem4 15558 subctctexmid 16052 |
| Copyright terms: Public domain | W3C validator |