| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orcom | GIF version | ||
| Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
| Ref | Expression |
|---|---|
| orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 732 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
| 2 | pm1.4 732 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orcomd 734 orbi1i 768 orass 772 or32 775 or42 777 orbi1d 796 pm5.61 799 oranabs 820 ordir 822 pm2.1dc 842 notnotrdc 848 dcnnOLD 854 pm5.17dc 909 pm5.7dc 960 dn1dc 966 pm5.75 968 3orrot 1008 3orcomb 1011 excxor 1420 xorcom 1430 19.33b2 1675 nf4dc 1716 nf4r 1717 19.31r 1727 dveeq2 1861 sbequilem 1884 dvelimALT 2061 dvelimfv 2062 dvelimor 2069 eueq2dc 2976 uncom 3348 reuun2 3487 prel12 3848 exmid01 4281 exmidsssnc 4286 ordtriexmid 4610 ordtri2orexmid 4612 ontr2exmid 4614 onsucsssucexmid 4616 ordsoexmid 4651 ordtri2or2exmid 4660 cnvsom 5268 fununi 5385 frec0g 6533 frecabcl 6535 frecsuclem 6542 swoer 6698 inffiexmid 7056 exmidontriimlem1 7391 enq0tr 7609 letr 8217 reapmul1 8730 reapneg 8732 reapcotr 8733 remulext1 8734 apsym 8741 mulext1 8747 elznn0nn 9448 elznn0 9449 zapne 9509 nneoor 9537 nn01to3 9800 ltxr 9959 xrletr 9992 swrdnd 11177 maxclpr 11719 minclpr 11734 odd2np1lem 12369 lcmcom 12572 dvdsprime 12630 coprm 12652 opprdomnbg 14223 bdbl 15162 cos11 15512 lgsdir2lem4 15695 subctctexmid 16297 |
| Copyright terms: Public domain | W3C validator |