| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orcom | GIF version | ||
| Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
| Ref | Expression |
|---|---|
| orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 728 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
| 2 | pm1.4 728 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orcomd 730 orbi1i 764 orass 768 or32 771 or42 773 orbi1d 792 pm5.61 795 oranabs 816 ordir 818 pm2.1dc 838 notnotrdc 844 dcnnOLD 850 pm5.17dc 905 pm5.7dc 956 dn1dc 962 pm5.75 964 3orrot 986 3orcomb 989 excxor 1389 xorcom 1399 19.33b2 1643 nf4dc 1684 nf4r 1685 19.31r 1695 dveeq2 1829 sbequilem 1852 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 eueq2dc 2937 uncom 3308 reuun2 3447 prel12 3802 exmid01 4232 exmidsssnc 4237 ordtriexmid 4558 ordtri2orexmid 4560 ontr2exmid 4562 onsucsssucexmid 4564 ordsoexmid 4599 ordtri2or2exmid 4608 cnvsom 5214 fununi 5327 frec0g 6464 frecabcl 6466 frecsuclem 6473 swoer 6629 inffiexmid 6976 exmidontriimlem1 7306 enq0tr 7520 letr 8128 reapmul1 8641 reapneg 8643 reapcotr 8644 remulext1 8645 apsym 8652 mulext1 8658 elznn0nn 9359 elznn0 9360 zapne 9419 nneoor 9447 nn01to3 9710 ltxr 9869 xrletr 9902 maxclpr 11406 minclpr 11421 odd2np1lem 12056 lcmcom 12259 dvdsprime 12317 coprm 12339 opprdomnbg 13908 bdbl 14847 cos11 15197 lgsdir2lem4 15380 subctctexmid 15755 |
| Copyright terms: Public domain | W3C validator |