| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orcom | GIF version | ||
| Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
| Ref | Expression |
|---|---|
| orcom | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 728 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
| 2 | pm1.4 728 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orcomd 730 orbi1i 764 orass 768 or32 771 or42 773 orbi1d 792 pm5.61 795 oranabs 816 ordir 818 pm2.1dc 838 notnotrdc 844 dcnnOLD 850 pm5.17dc 905 pm5.7dc 956 dn1dc 962 pm5.75 964 3orrot 986 3orcomb 989 excxor 1389 xorcom 1399 19.33b2 1643 nf4dc 1684 nf4r 1685 19.31r 1695 dveeq2 1829 sbequilem 1852 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 eueq2dc 2937 uncom 3307 reuun2 3446 prel12 3801 exmid01 4231 exmidsssnc 4236 ordtriexmid 4557 ordtri2orexmid 4559 ontr2exmid 4561 onsucsssucexmid 4563 ordsoexmid 4598 ordtri2or2exmid 4607 cnvsom 5213 fununi 5326 frec0g 6455 frecabcl 6457 frecsuclem 6464 swoer 6620 inffiexmid 6967 exmidontriimlem1 7288 enq0tr 7501 letr 8109 reapmul1 8622 reapneg 8624 reapcotr 8625 remulext1 8626 apsym 8633 mulext1 8639 elznn0nn 9340 elznn0 9341 zapne 9400 nneoor 9428 nn01to3 9691 ltxr 9850 xrletr 9883 maxclpr 11387 minclpr 11402 odd2np1lem 12037 lcmcom 12232 dvdsprime 12290 coprm 12312 opprdomnbg 13830 bdbl 14739 cos11 15089 lgsdir2lem4 15272 subctctexmid 15645 |
| Copyright terms: Public domain | W3C validator |