ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orcom GIF version

Theorem orcom 733
Description: Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.)
Assertion
Ref Expression
orcom ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem orcom
StepHypRef Expression
1 pm1.4 732 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 pm1.4 732 . 2 ((𝜓𝜑) → (𝜑𝜓))
31, 2impbii 126 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orcomd  734  orbi1i  768  orass  772  or32  775  or42  777  orbi1d  796  pm5.61  799  oranabs  820  ordir  822  pm2.1dc  842  notnotrdc  848  dcnnOLD  854  pm5.17dc  909  pm5.7dc  960  dn1dc  966  pm5.75  968  3orrot  1008  3orcomb  1011  excxor  1420  xorcom  1430  19.33b2  1675  nf4dc  1716  nf4r  1717  19.31r  1727  dveeq2  1861  sbequilem  1884  dvelimALT  2061  dvelimfv  2062  dvelimor  2069  eueq2dc  2976  uncom  3348  reuun2  3487  prel12  3848  exmid01  4281  exmidsssnc  4286  ordtriexmid  4610  ordtri2orexmid  4612  ontr2exmid  4614  onsucsssucexmid  4616  ordsoexmid  4651  ordtri2or2exmid  4660  cnvsom  5268  fununi  5385  frec0g  6533  frecabcl  6535  frecsuclem  6542  swoer  6698  inffiexmid  7056  exmidontriimlem1  7391  enq0tr  7609  letr  8217  reapmul1  8730  reapneg  8732  reapcotr  8733  remulext1  8734  apsym  8741  mulext1  8747  elznn0nn  9448  elznn0  9449  zapne  9509  nneoor  9537  nn01to3  9800  ltxr  9959  xrletr  9992  swrdnd  11177  maxclpr  11719  minclpr  11734  odd2np1lem  12369  lcmcom  12572  dvdsprime  12630  coprm  12652  opprdomnbg  14223  bdbl  15162  cos11  15512  lgsdir2lem4  15695  subctctexmid  16297
  Copyright terms: Public domain W3C validator