ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orordi GIF version

Theorem orordi 768
Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
Assertion
Ref Expression
orordi ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem orordi
StepHypRef Expression
1 oridm 752 . . 3 ((𝜑𝜑) ↔ 𝜑)
21orbi1i 758 . 2 (((𝜑𝜑) ∨ (𝜓𝜒)) ↔ (𝜑 ∨ (𝜓𝜒)))
3 or4 766 . 2 (((𝜑𝜑) ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
42, 3bitr3i 185 1 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator