| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reapcotr | GIF version | ||
| Description: Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
| Ref | Expression |
|---|---|
| reapcotr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reaplt 8743 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 2 | 1 | 3adant3 1041 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 3 | axltwlin 8222 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) | |
| 4 | axltwlin 8222 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 < 𝐶 ∨ 𝐶 < 𝐴))) | |
| 5 | 4 | 3com12 1231 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 < 𝐶 ∨ 𝐶 < 𝐴))) |
| 6 | 3, 5 | orim12d 791 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)))) |
| 7 | 2, 6 | sylbid 150 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)))) |
| 8 | orcom 733 | . . . . 5 ⊢ ((𝐵 < 𝐶 ∨ 𝐶 < 𝐴) ↔ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶)) | |
| 9 | 8 | orbi2i 767 | . . . 4 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶))) |
| 10 | or42 777 | . . . 4 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) | |
| 11 | 9, 10 | bitri 184 | . . 3 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) |
| 12 | 7, 11 | imbitrdi 161 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵)))) |
| 13 | reaplt 8743 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶 ↔ (𝐴 < 𝐶 ∨ 𝐶 < 𝐴))) | |
| 14 | 13 | 3adant2 1040 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶 ↔ (𝐴 < 𝐶 ∨ 𝐶 < 𝐴))) |
| 15 | reaplt 8743 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 # 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) | |
| 16 | 15 | 3adant1 1039 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 # 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) |
| 17 | 14, 16 | orbi12d 798 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 # 𝐶 ∨ 𝐵 # 𝐶) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵)))) |
| 18 | 12, 17 | sylibrd 169 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 < clt 8189 # cap 8736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 |
| This theorem is referenced by: apcotr 8762 |
| Copyright terms: Public domain | W3C validator |