ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapcotr GIF version

Theorem reapcotr 8517
Description: Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
reapcotr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))

Proof of Theorem reapcotr
StepHypRef Expression
1 reaplt 8507 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
213adant3 1012 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
3 axltwlin 7987 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
4 axltwlin 7987 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 < 𝐶𝐶 < 𝐴)))
543com12 1202 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 < 𝐶𝐶 < 𝐴)))
63, 5orim12d 781 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐴) → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ (𝐵 < 𝐶𝐶 < 𝐴))))
72, 6sylbid 149 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ (𝐵 < 𝐶𝐶 < 𝐴))))
8 orcom 723 . . . . 5 ((𝐵 < 𝐶𝐶 < 𝐴) ↔ (𝐶 < 𝐴𝐵 < 𝐶))
98orbi2i 757 . . . 4 (((𝐴 < 𝐶𝐶 < 𝐵) ∨ (𝐵 < 𝐶𝐶 < 𝐴)) ↔ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ (𝐶 < 𝐴𝐵 < 𝐶)))
10 or42 767 . . . 4 (((𝐴 < 𝐶𝐶 < 𝐵) ∨ (𝐶 < 𝐴𝐵 < 𝐶)) ↔ ((𝐴 < 𝐶𝐶 < 𝐴) ∨ (𝐵 < 𝐶𝐶 < 𝐵)))
119, 10bitri 183 . . 3 (((𝐴 < 𝐶𝐶 < 𝐵) ∨ (𝐵 < 𝐶𝐶 < 𝐴)) ↔ ((𝐴 < 𝐶𝐶 < 𝐴) ∨ (𝐵 < 𝐶𝐶 < 𝐵)))
127, 11syl6ib 160 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → ((𝐴 < 𝐶𝐶 < 𝐴) ∨ (𝐵 < 𝐶𝐶 < 𝐵))))
13 reaplt 8507 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶 ↔ (𝐴 < 𝐶𝐶 < 𝐴)))
14133adant2 1011 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶 ↔ (𝐴 < 𝐶𝐶 < 𝐴)))
15 reaplt 8507 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 # 𝐶 ↔ (𝐵 < 𝐶𝐶 < 𝐵)))
16153adant1 1010 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 # 𝐶 ↔ (𝐵 < 𝐶𝐶 < 𝐵)))
1714, 16orbi12d 788 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 # 𝐶𝐵 # 𝐶) ↔ ((𝐴 < 𝐶𝐶 < 𝐴) ∨ (𝐵 < 𝐶𝐶 < 𝐵))))
1812, 17sylibrd 168 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 703  w3a 973  wcel 2141   class class class wbr 3989  cr 7773   < clt 7954   # cap 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501
This theorem is referenced by:  apcotr  8526
  Copyright terms: Public domain W3C validator