![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reapcotr | GIF version |
Description: Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
Ref | Expression |
---|---|
reapcotr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reaplt 7965 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
2 | 1 | 3adant3 959 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
3 | axltwlin 7457 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) | |
4 | axltwlin 7457 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 < 𝐶 ∨ 𝐶 < 𝐴))) | |
5 | 4 | 3com12 1143 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 < 𝐶 ∨ 𝐶 < 𝐴))) |
6 | 3, 5 | orim12d 733 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)))) |
7 | 2, 6 | sylbid 148 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)))) |
8 | orcom 680 | . . . . 5 ⊢ ((𝐵 < 𝐶 ∨ 𝐶 < 𝐴) ↔ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶)) | |
9 | 8 | orbi2i 712 | . . . 4 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶))) |
10 | or42 722 | . . . 4 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) | |
11 | 9, 10 | bitri 182 | . . 3 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) |
12 | 7, 11 | syl6ib 159 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵)))) |
13 | reaplt 7965 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶 ↔ (𝐴 < 𝐶 ∨ 𝐶 < 𝐴))) | |
14 | 13 | 3adant2 958 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶 ↔ (𝐴 < 𝐶 ∨ 𝐶 < 𝐴))) |
15 | reaplt 7965 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 # 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) | |
16 | 15 | 3adant1 957 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 # 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) |
17 | 14, 16 | orbi12d 740 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 # 𝐶 ∨ 𝐵 # 𝐶) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵)))) |
18 | 12, 17 | sylibrd 167 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∨ wo 662 ∧ w3a 920 ∈ wcel 1434 class class class wbr 3811 ℝcr 7252 < clt 7425 # cap 7958 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-mulrcl 7347 ax-addcom 7348 ax-mulcom 7349 ax-addass 7350 ax-mulass 7351 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-1rid 7355 ax-0id 7356 ax-rnegex 7357 ax-precex 7358 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-apti 7363 ax-pre-ltadd 7364 ax-pre-mulgt0 7365 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-id 4084 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-iota 4934 df-fun 4971 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-pnf 7427 df-mnf 7428 df-ltxr 7430 df-sub 7558 df-neg 7559 df-reap 7952 df-ap 7959 |
This theorem is referenced by: apcotr 7984 |
Copyright terms: Public domain | W3C validator |