Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reapcotr | GIF version |
Description: Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
Ref | Expression |
---|---|
reapcotr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reaplt 8507 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
2 | 1 | 3adant3 1012 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
3 | axltwlin 7987 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) | |
4 | axltwlin 7987 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 < 𝐶 ∨ 𝐶 < 𝐴))) | |
5 | 4 | 3com12 1202 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 < 𝐶 ∨ 𝐶 < 𝐴))) |
6 | 3, 5 | orim12d 781 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)))) |
7 | 2, 6 | sylbid 149 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)))) |
8 | orcom 723 | . . . . 5 ⊢ ((𝐵 < 𝐶 ∨ 𝐶 < 𝐴) ↔ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶)) | |
9 | 8 | orbi2i 757 | . . . 4 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶))) |
10 | or42 767 | . . . 4 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐶 < 𝐴 ∨ 𝐵 < 𝐶)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) | |
11 | 9, 10 | bitri 183 | . . 3 ⊢ (((𝐴 < 𝐶 ∨ 𝐶 < 𝐵) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐴)) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) |
12 | 7, 11 | syl6ib 160 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵)))) |
13 | reaplt 8507 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶 ↔ (𝐴 < 𝐶 ∨ 𝐶 < 𝐴))) | |
14 | 13 | 3adant2 1011 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶 ↔ (𝐴 < 𝐶 ∨ 𝐶 < 𝐴))) |
15 | reaplt 8507 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 # 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) | |
16 | 15 | 3adant1 1010 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 # 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵))) |
17 | 14, 16 | orbi12d 788 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 # 𝐶 ∨ 𝐵 # 𝐶) ↔ ((𝐴 < 𝐶 ∨ 𝐶 < 𝐴) ∨ (𝐵 < 𝐶 ∨ 𝐶 < 𝐵)))) |
18 | 12, 17 | sylibrd 168 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 703 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 < clt 7954 # cap 8500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 |
This theorem is referenced by: apcotr 8526 |
Copyright terms: Public domain | W3C validator |