Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 751 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 132 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 751 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 125 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi1i 753 orbi12i 754 orass 757 or4 761 or42 762 orordir 764 dcnnOLD 839 orbididc 943 3orcomb 977 excxor 1368 xordc 1382 nf4dc 1658 nf4r 1659 19.44 1670 dveeq2 1803 dvelimALT 1998 dvelimfv 1999 dvelimor 2006 dcne 2346 unass 3278 undi 3369 undif3ss 3382 symdifxor 3387 undif4 3470 iinuniss 3947 ordsucim 4476 suc11g 4533 qfto 4992 nntri3or 6457 reapcotr 8492 elnn0 9112 elxnn0 9175 elnn1uz2 9541 nn01to3 9551 elxr 9708 xaddcom 9793 xnegdi 9800 xpncan 9803 xleadd1a 9805 lcmdvds 12007 mulgcddvds 12022 cncongr2 12032 pythagtrip 12211 bj-peano4 13797 apdifflemr 13886 |
Copyright terms: Public domain | W3C validator |