ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orbi2i GIF version

Theorem orbi2i 764
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.)
Hypothesis
Ref Expression
orbi2i.1 (𝜑𝜓)
Assertion
Ref Expression
orbi2i ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem orbi2i
StepHypRef Expression
1 orbi2i.1 . . . 4 (𝜑𝜓)
21biimpi 120 . . 3 (𝜑𝜓)
32orim2i 763 . 2 ((𝜒𝜑) → (𝜒𝜓))
41biimpri 133 . . 3 (𝜓𝜑)
54orim2i 763 . 2 ((𝜒𝜓) → (𝜒𝜑))
63, 5impbii 126 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orbi1i  765  orbi12i  766  orass  769  or4  773  or42  774  orordir  776  dcnnOLD  851  orbididc  956  3orcomb  990  excxor  1398  xordc  1412  nf4dc  1694  nf4r  1695  19.44  1706  dveeq2  1839  dvelimALT  2039  dvelimfv  2040  dvelimor  2047  dcne  2388  unass  3334  undi  3425  undif3ss  3438  symdifxor  3443  undif4  3527  iinuniss  4016  ordsucim  4556  suc11g  4613  qfto  5081  nntri3or  6592  reapcotr  8691  elnn0  9317  elxnn0  9380  elnn1uz2  9748  nn01to3  9758  elxr  9918  xaddcom  10003  xnegdi  10010  xpncan  10013  xleadd1a  10015  lcmdvds  12476  mulgcddvds  12491  cncongr2  12501  pythagtrip  12681  bj-peano4  16029  apdifflemr  16127
  Copyright terms: Public domain W3C validator