![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 761 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 761 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1i 763 orbi12i 764 orass 767 or4 771 or42 772 orordir 774 dcnnOLD 849 orbididc 953 3orcomb 987 excxor 1378 xordc 1392 nf4dc 1670 nf4r 1671 19.44 1682 dveeq2 1815 dvelimALT 2010 dvelimfv 2011 dvelimor 2018 dcne 2358 unass 3294 undi 3385 undif3ss 3398 symdifxor 3403 undif4 3487 iinuniss 3971 ordsucim 4501 suc11g 4558 qfto 5020 nntri3or 6496 reapcotr 8557 elnn0 9180 elxnn0 9243 elnn1uz2 9609 nn01to3 9619 elxr 9778 xaddcom 9863 xnegdi 9870 xpncan 9873 xleadd1a 9875 lcmdvds 12081 mulgcddvds 12096 cncongr2 12106 pythagtrip 12285 bj-peano4 14746 apdifflemr 14834 |
Copyright terms: Public domain | W3C validator |