| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 762 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 762 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1i 764 orbi12i 765 orass 768 or4 772 or42 773 orordir 775 dcnnOLD 850 orbididc 955 3orcomb 989 excxor 1389 xordc 1403 nf4dc 1684 nf4r 1685 19.44 1696 dveeq2 1829 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 dcne 2378 unass 3321 undi 3412 undif3ss 3425 symdifxor 3430 undif4 3514 iinuniss 4000 ordsucim 4537 suc11g 4594 qfto 5060 nntri3or 6560 reapcotr 8644 elnn0 9270 elxnn0 9333 elnn1uz2 9700 nn01to3 9710 elxr 9870 xaddcom 9955 xnegdi 9962 xpncan 9965 xleadd1a 9967 lcmdvds 12274 mulgcddvds 12289 cncongr2 12299 pythagtrip 12479 bj-peano4 15709 apdifflemr 15804 |
| Copyright terms: Public domain | W3C validator |