| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 762 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 762 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1i 764 orbi12i 765 orass 768 or4 772 or42 773 orordir 775 dcnnOLD 850 orbididc 955 3orcomb 989 excxor 1397 xordc 1411 nf4dc 1692 nf4r 1693 19.44 1704 dveeq2 1837 dvelimALT 2037 dvelimfv 2038 dvelimor 2045 dcne 2386 unass 3329 undi 3420 undif3ss 3433 symdifxor 3438 undif4 3522 iinuniss 4009 ordsucim 4547 suc11g 4604 qfto 5071 nntri3or 6578 reapcotr 8670 elnn0 9296 elxnn0 9359 elnn1uz2 9727 nn01to3 9737 elxr 9897 xaddcom 9982 xnegdi 9989 xpncan 9992 xleadd1a 9994 lcmdvds 12343 mulgcddvds 12358 cncongr2 12368 pythagtrip 12548 bj-peano4 15824 apdifflemr 15919 |
| Copyright terms: Public domain | W3C validator |