| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 762 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 762 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1i 764 orbi12i 765 orass 768 or4 772 or42 773 orordir 775 dcnnOLD 850 orbididc 955 3orcomb 989 excxor 1389 xordc 1403 nf4dc 1684 nf4r 1685 19.44 1696 dveeq2 1829 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 dcne 2378 unass 3320 undi 3411 undif3ss 3424 symdifxor 3429 undif4 3513 iinuniss 3999 ordsucim 4536 suc11g 4593 qfto 5059 nntri3or 6551 reapcotr 8625 elnn0 9251 elxnn0 9314 elnn1uz2 9681 nn01to3 9691 elxr 9851 xaddcom 9936 xnegdi 9943 xpncan 9946 xleadd1a 9948 lcmdvds 12247 mulgcddvds 12262 cncongr2 12272 pythagtrip 12452 bj-peano4 15601 apdifflemr 15691 |
| Copyright terms: Public domain | W3C validator |