| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 763 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 763 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1i 765 orbi12i 766 orass 769 or4 773 or42 774 orordir 776 dcnnOLD 851 orbididc 956 3orcomb 990 excxor 1398 xordc 1412 nf4dc 1694 nf4r 1695 19.44 1706 dveeq2 1839 dvelimALT 2039 dvelimfv 2040 dvelimor 2047 dcne 2388 unass 3334 undi 3425 undif3ss 3438 symdifxor 3443 undif4 3527 iinuniss 4016 ordsucim 4556 suc11g 4613 qfto 5081 nntri3or 6592 reapcotr 8691 elnn0 9317 elxnn0 9380 elnn1uz2 9748 nn01to3 9758 elxr 9918 xaddcom 10003 xnegdi 10010 xpncan 10013 xleadd1a 10015 lcmdvds 12476 mulgcddvds 12491 cncongr2 12501 pythagtrip 12681 bj-peano4 16029 apdifflemr 16127 |
| Copyright terms: Public domain | W3C validator |