| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | orim2i 766 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| 4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | orim2i 766 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1i 768 orbi12i 769 orass 772 or4 776 or42 777 orordir 779 dcnnOLD 854 orbididc 959 3orcomb 1011 excxor 1420 xordc 1434 nf4dc 1716 nf4r 1717 19.44 1728 dveeq2 1861 dvelimALT 2061 dvelimfv 2062 dvelimor 2069 dcne 2411 unass 3361 undi 3452 undif3ss 3465 symdifxor 3470 undif4 3554 iinuniss 4047 ordsucim 4591 suc11g 4648 qfto 5117 nntri3or 6637 reapcotr 8741 elnn0 9367 elxnn0 9430 elnn1uz2 9798 nn01to3 9808 elxr 9968 xaddcom 10053 xnegdi 10060 xpncan 10063 xleadd1a 10065 lcmdvds 12596 mulgcddvds 12611 cncongr2 12621 pythagtrip 12801 bj-peano4 16276 apdifflemr 16374 |
| Copyright terms: Public domain | W3C validator |