![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 762 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 762 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1i 764 orbi12i 765 orass 768 or4 772 or42 773 orordir 775 dcnnOLD 850 orbididc 955 3orcomb 989 excxor 1389 xordc 1403 nf4dc 1681 nf4r 1682 19.44 1693 dveeq2 1826 dvelimALT 2026 dvelimfv 2027 dvelimor 2034 dcne 2375 unass 3316 undi 3407 undif3ss 3420 symdifxor 3425 undif4 3509 iinuniss 3995 ordsucim 4532 suc11g 4589 qfto 5055 nntri3or 6546 reapcotr 8617 elnn0 9242 elxnn0 9305 elnn1uz2 9672 nn01to3 9682 elxr 9842 xaddcom 9927 xnegdi 9934 xpncan 9937 xleadd1a 9939 lcmdvds 12217 mulgcddvds 12232 cncongr2 12242 pythagtrip 12421 bj-peano4 15447 apdifflemr 15537 |
Copyright terms: Public domain | W3C validator |