Proof of Theorem sbequi
Step | Hyp | Ref
| Expression |
1 | | nfsb2or 1817 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 ∨ Ⅎ𝑧[𝑥 / 𝑧]𝜑) |
2 | | nfr 1498 |
. . . . . 6
⊢
(Ⅎ𝑧[𝑥 / 𝑧]𝜑 → ([𝑥 / 𝑧]𝜑 → ∀𝑧[𝑥 / 𝑧]𝜑)) |
3 | | equvini 1738 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) |
4 | | stdpc7 1750 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ([𝑥 / 𝑧]𝜑 → 𝜑)) |
5 | | sbequ1 1748 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝜑 → [𝑦 / 𝑧]𝜑)) |
6 | 4, 5 | sylan9 407 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = 𝑦) → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) |
7 | 6 | eximi 1580 |
. . . . . . 7
⊢
(∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦) → ∃𝑧([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) |
8 | | 19.35-1 1604 |
. . . . . . 7
⊢
(∃𝑧([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑) → (∀𝑧[𝑥 / 𝑧]𝜑 → ∃𝑧[𝑦 / 𝑧]𝜑)) |
9 | 3, 7, 8 | 3syl 17 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (∀𝑧[𝑥 / 𝑧]𝜑 → ∃𝑧[𝑦 / 𝑧]𝜑)) |
10 | 2, 9 | syl9 72 |
. . . . 5
⊢
(Ⅎ𝑧[𝑥 / 𝑧]𝜑 → (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → ∃𝑧[𝑦 / 𝑧]𝜑))) |
11 | 10 | orim2i 751 |
. . . 4
⊢
((∀𝑧 𝑧 = 𝑥 ∨ Ⅎ𝑧[𝑥 / 𝑧]𝜑) → (∀𝑧 𝑧 = 𝑥 ∨ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → ∃𝑧[𝑦 / 𝑧]𝜑)))) |
12 | 1, 11 | ax-mp 5 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → ∃𝑧[𝑦 / 𝑧]𝜑))) |
13 | | nfsb2or 1817 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑧]𝜑) |
14 | | 19.9t 1622 |
. . . . . . 7
⊢
(Ⅎ𝑧[𝑦 / 𝑧]𝜑 → (∃𝑧[𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
15 | 14 | biimpd 143 |
. . . . . 6
⊢
(Ⅎ𝑧[𝑦 / 𝑧]𝜑 → (∃𝑧[𝑦 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) |
16 | 15 | orim2i 751 |
. . . . 5
⊢
((∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑧]𝜑) → (∀𝑧 𝑧 = 𝑦 ∨ (∃𝑧[𝑦 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
17 | 13, 16 | ax-mp 5 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 ∨ (∃𝑧[𝑦 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) |
18 | | ax-1 6 |
. . . . 5
⊢
((∃𝑧[𝑦 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑) → (𝑥 = 𝑦 → (∃𝑧[𝑦 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
19 | 18 | orim2i 751 |
. . . 4
⊢
((∀𝑧 𝑧 = 𝑦 ∨ (∃𝑧[𝑦 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → (∃𝑧[𝑦 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)))) |
20 | 17, 19 | ax-mp 5 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → (∃𝑧[𝑦 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
21 | 12, 20 | sbequilem 1818 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)))) |
22 | | sbequ2 1749 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ([𝑥 / 𝑧]𝜑 → 𝜑)) |
23 | 22 | sps 1517 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑥 / 𝑧]𝜑 → 𝜑)) |
24 | 23 | adantr 274 |
. . . . 5
⊢
((∀𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑦) → ([𝑥 / 𝑧]𝜑 → 𝜑)) |
25 | | sbequ1 1748 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
26 | | drsb1 1779 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]𝜑)) |
27 | 26 | biimpd 143 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑧]𝜑)) |
28 | 27 | alequcoms 1496 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑧]𝜑)) |
29 | 25, 28 | sylan9r 408 |
. . . . 5
⊢
((∀𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑦) → (𝜑 → [𝑦 / 𝑧]𝜑)) |
30 | 24, 29 | syld 45 |
. . . 4
⊢
((∀𝑧 𝑧 = 𝑥 ∧ 𝑥 = 𝑦) → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) |
31 | 30 | ex 114 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
32 | | drsb1 1779 |
. . . . . . . . 9
⊢
(∀𝑧 𝑧 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑥 / 𝑦]𝜑)) |
33 | 32 | biimpd 143 |
. . . . . . . 8
⊢
(∀𝑧 𝑧 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑥 / 𝑦]𝜑)) |
34 | | stdpc7 1750 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 → 𝜑)) |
35 | 33, 34 | sylan9 407 |
. . . . . . 7
⊢
((∀𝑧 𝑧 = 𝑦 ∧ 𝑥 = 𝑦) → ([𝑥 / 𝑧]𝜑 → 𝜑)) |
36 | 5 | sps 1517 |
. . . . . . . 8
⊢
(∀𝑧 𝑧 = 𝑦 → (𝜑 → [𝑦 / 𝑧]𝜑)) |
37 | 36 | adantr 274 |
. . . . . . 7
⊢
((∀𝑧 𝑧 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜑 → [𝑦 / 𝑧]𝜑)) |
38 | 35, 37 | syld 45 |
. . . . . 6
⊢
((∀𝑧 𝑧 = 𝑦 ∧ 𝑥 = 𝑦) → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) |
39 | 38 | ex 114 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
40 | 39 | orim1i 750 |
. . . 4
⊢
((∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) → ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) ∨ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)))) |
41 | | pm1.2 746 |
. . . 4
⊢ (((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) ∨ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) → (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
42 | 40, 41 | syl 14 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) → (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
43 | 31, 42 | jaoi 706 |
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)))) → (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
44 | 21, 43 | ax-mp 5 |
1
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) |