Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.26dc | GIF version |
Description: Decidable proposition version of theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.) |
Ref | Expression |
---|---|
pm2.26dc | ⊢ (DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑 → 𝜓) → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 40 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | imordc 883 | . 2 ⊢ (DECID 𝜑 → ((𝜑 → ((𝜑 → 𝜓) → 𝜓)) ↔ (¬ 𝜑 ∨ ((𝜑 → 𝜓) → 𝜓)))) | |
3 | 1, 2 | mpbii 147 | 1 ⊢ (DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑 → 𝜓) → 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 DECID wdc 820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 821 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |