ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.26dc GIF version

Theorem pm2.26dc 897
Description: Decidable proposition version of theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.)
Assertion
Ref Expression
pm2.26dc (DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑𝜓) → 𝜓)))

Proof of Theorem pm2.26dc
StepHypRef Expression
1 pm2.27 40 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
2 imordc 887 . 2 (DECID 𝜑 → ((𝜑 → ((𝜑𝜓) → 𝜓)) ↔ (¬ 𝜑 ∨ ((𝜑𝜓) → 𝜓))))
31, 2mpbii 147 1 (DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑𝜓) → 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator