| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.26dc | GIF version | ||
| Description: Decidable proposition version of theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.) |
| Ref | Expression |
|---|---|
| pm2.26dc | ⊢ (DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑 → 𝜓) → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 40 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | imordc 898 | . 2 ⊢ (DECID 𝜑 → ((𝜑 → ((𝜑 → 𝜓) → 𝜓)) ↔ (¬ 𝜑 ∨ ((𝜑 → 𝜓) → 𝜓)))) | |
| 3 | 1, 2 | mpbii 148 | 1 ⊢ (DECID 𝜑 → (¬ 𝜑 ∨ ((𝜑 → 𝜓) → 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |