![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbii | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min | ⊢ 𝜓 |
mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbii | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.26dc 907 orandc 939 19.9ht 1641 ax11v2 1820 ax11v 1827 ax11ev 1828 equs5or 1830 nfsbxy 1942 nfsbxyt 1943 nfabdw 2338 eqvisset 2749 vtoclgf 2797 vtoclg1f 2798 eueq3dc 2913 mo2icl 2918 csbiegf 3102 un00 3471 sneqr 3762 preqr1 3770 preq12b 3772 prel12 3773 nfopd 3797 ssex 4142 exmidundif 4208 iunpw 4482 nfimad 4981 dfrel2 5081 funsng 5264 cnvresid 5292 nffvd 5529 fnbrfvb 5558 funfvop 5630 acexmidlema 5868 tposf12 6272 supsnti 7006 exmidonfinlem 7194 sucpw1ne3 7233 sucpw1nel3 7234 recidnq 7394 ltaddnq 7408 ltadd1sr 7777 suplocsrlempr 7808 pncan3 8167 divcanap2 8639 ltp1 8803 ltm1 8805 recreclt 8859 nn0ind-raph 9372 2tnp1ge0ge0 10303 fsumcnv 11447 fprodcnv 11635 ef01bndlem 11766 sin01gt0 11771 cos01gt0 11772 ltoddhalfle 11900 bezoutlemnewy 11999 isprm5 12144 nmznsg 13078 tangtx 14344 bdsepnft 14724 bdssex 14739 bj-inex 14744 bj-d0clsepcl 14762 bj-2inf 14775 bj-inf2vnlem2 14808 |
Copyright terms: Public domain | W3C validator |