![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbii | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min | ⊢ 𝜓 |
mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbii | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbid 146 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.26dc 875 orandc 906 19.9ht 1603 ax11v2 1774 ax11v 1781 ax11ev 1782 equs5or 1784 nfsbxy 1893 nfsbxyt 1894 eqvisset 2667 vtoclgf 2715 vtoclg1f 2716 eueq3dc 2827 mo2icl 2832 csbiegf 3009 un00 3375 sneqr 3653 preqr1 3661 preq12b 3663 prel12 3664 nfopd 3688 ssex 4025 exmidundif 4089 iunpw 4361 nfimad 4848 dfrel2 4947 funsng 5127 cnvresid 5155 nffvd 5387 fnbrfvb 5416 funfvop 5486 acexmidlema 5719 tposf12 6120 supsnti 6844 recidnq 7149 ltaddnq 7163 ltadd1sr 7519 pncan3 7893 divcanap2 8353 ltp1 8512 ltm1 8514 recreclt 8568 nn0ind-raph 9072 2tnp1ge0ge0 9967 fsumcnv 11098 ef01bndlem 11314 sin01gt0 11319 cos01gt0 11320 ltoddhalfle 11438 bezoutlemnewy 11530 bdsepnft 12777 bdssex 12792 bj-inex 12797 bj-d0clsepcl 12815 bj-2inf 12828 bj-inf2vnlem2 12861 |
Copyright terms: Public domain | W3C validator |