| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | GIF version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min | ⊢ 𝜓 |
| mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbii | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 909 orandc 942 19.9ht 1665 ax11v2 1844 ax11v 1851 ax11ev 1852 equs5or 1854 nfsbxy 1971 nfsbxyt 1972 nfabdw 2368 eqvisset 2783 vtoclgf 2832 vtoclg1f 2833 eueq3dc 2948 mo2icl 2953 csbiegf 3138 un00 3508 sneqr 3803 preqr1 3811 preq12b 3813 prel12 3814 nfopd 3838 ssex 4185 exmidundif 4254 iunpw 4531 nfimad 5036 dfrel2 5138 funsng 5325 cnvresid 5353 nffvd 5595 fnbrfvb 5626 funfvop 5699 acexmidlema 5942 tposf12 6362 supsnti 7114 exmidonfinlem 7308 sucpw1ne3 7351 sucpw1nel3 7352 recidnq 7513 ltaddnq 7527 ltadd1sr 7896 suplocsrlempr 7927 pncan3 8287 divcanap2 8760 ltp1 8924 ltm1 8926 recreclt 8980 nn0ind-raph 9497 2tnp1ge0ge0 10451 iswrdiz 11008 fsumcnv 11792 fprodcnv 11980 ef01bndlem 12111 sin01gt0 12117 cos01gt0 12118 ltoddhalfle 12248 bezoutlemnewy 12361 isprm5 12508 4sqlem12 12769 gsumval2 13273 nmznsg 13593 tangtx 15354 gausslemma2dlem1a 15579 lgseisenlem4 15594 2lgslem3a 15614 2lgslem3b 15615 2lgslem3c 15616 2lgslem3d 15617 bdsepnft 15897 bdssex 15912 bj-inex 15917 bj-d0clsepcl 15935 bj-2inf 15948 bj-inf2vnlem2 15981 |
| Copyright terms: Public domain | W3C validator |