Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbii | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min | ⊢ 𝜓 |
mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbii | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbid 146 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.26dc 897 orandc 929 19.9ht 1629 ax11v2 1808 ax11v 1815 ax11ev 1816 equs5or 1818 nfsbxy 1930 nfsbxyt 1931 nfabdw 2327 eqvisset 2736 vtoclgf 2784 vtoclg1f 2785 eueq3dc 2900 mo2icl 2905 csbiegf 3088 un00 3455 sneqr 3740 preqr1 3748 preq12b 3750 prel12 3751 nfopd 3775 ssex 4119 exmidundif 4185 iunpw 4458 nfimad 4955 dfrel2 5054 funsng 5234 cnvresid 5262 nffvd 5498 fnbrfvb 5527 funfvop 5597 acexmidlema 5833 tposf12 6237 supsnti 6970 exmidonfinlem 7149 sucpw1ne3 7188 sucpw1nel3 7189 recidnq 7334 ltaddnq 7348 ltadd1sr 7717 suplocsrlempr 7748 pncan3 8106 divcanap2 8576 ltp1 8739 ltm1 8741 recreclt 8795 nn0ind-raph 9308 2tnp1ge0ge0 10236 fsumcnv 11378 fprodcnv 11566 ef01bndlem 11697 sin01gt0 11702 cos01gt0 11703 ltoddhalfle 11830 bezoutlemnewy 11929 isprm5 12074 tangtx 13399 bdsepnft 13769 bdssex 13784 bj-inex 13789 bj-d0clsepcl 13807 bj-2inf 13820 bj-inf2vnlem2 13853 |
Copyright terms: Public domain | W3C validator |