| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | GIF version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min | ⊢ 𝜓 |
| mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbii | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 908 orandc 941 19.9ht 1655 ax11v2 1834 ax11v 1841 ax11ev 1842 equs5or 1844 nfsbxy 1961 nfsbxyt 1962 nfabdw 2358 eqvisset 2773 vtoclgf 2822 vtoclg1f 2823 eueq3dc 2938 mo2icl 2943 csbiegf 3128 un00 3498 sneqr 3791 preqr1 3799 preq12b 3801 prel12 3802 nfopd 3826 ssex 4171 exmidundif 4240 iunpw 4516 nfimad 5019 dfrel2 5121 funsng 5305 cnvresid 5333 nffvd 5573 fnbrfvb 5604 funfvop 5677 acexmidlema 5916 tposf12 6336 supsnti 7080 exmidonfinlem 7274 sucpw1ne3 7317 sucpw1nel3 7318 recidnq 7479 ltaddnq 7493 ltadd1sr 7862 suplocsrlempr 7893 pncan3 8253 divcanap2 8726 ltp1 8890 ltm1 8892 recreclt 8946 nn0ind-raph 9462 2tnp1ge0ge0 10410 iswrdiz 10961 fsumcnv 11621 fprodcnv 11809 ef01bndlem 11940 sin01gt0 11946 cos01gt0 11947 ltoddhalfle 12077 bezoutlemnewy 12190 isprm5 12337 4sqlem12 12598 gsumval2 13101 nmznsg 13421 tangtx 15182 gausslemma2dlem1a 15407 lgseisenlem4 15422 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 bdsepnft 15641 bdssex 15656 bj-inex 15661 bj-d0clsepcl 15679 bj-2inf 15692 bj-inf2vnlem2 15725 |
| Copyright terms: Public domain | W3C validator |