![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbii | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min | ⊢ 𝜓 |
mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbii | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.26dc 908 orandc 941 19.9ht 1652 ax11v2 1831 ax11v 1838 ax11ev 1839 equs5or 1841 nfsbxy 1958 nfsbxyt 1959 nfabdw 2355 eqvisset 2770 vtoclgf 2818 vtoclg1f 2819 eueq3dc 2934 mo2icl 2939 csbiegf 3124 un00 3493 sneqr 3786 preqr1 3794 preq12b 3796 prel12 3797 nfopd 3821 ssex 4166 exmidundif 4235 iunpw 4511 nfimad 5014 dfrel2 5116 funsng 5300 cnvresid 5328 nffvd 5566 fnbrfvb 5597 funfvop 5670 acexmidlema 5909 tposf12 6322 supsnti 7064 exmidonfinlem 7253 sucpw1ne3 7292 sucpw1nel3 7293 recidnq 7453 ltaddnq 7467 ltadd1sr 7836 suplocsrlempr 7867 pncan3 8227 divcanap2 8699 ltp1 8863 ltm1 8865 recreclt 8919 nn0ind-raph 9434 2tnp1ge0ge0 10370 iswrdiz 10921 fsumcnv 11580 fprodcnv 11768 ef01bndlem 11899 sin01gt0 11905 cos01gt0 11906 ltoddhalfle 12034 bezoutlemnewy 12133 isprm5 12280 4sqlem12 12540 gsumval2 12980 nmznsg 13283 tangtx 14973 gausslemma2dlem1a 15174 lgseisenlem4 15189 bdsepnft 15379 bdssex 15394 bj-inex 15399 bj-d0clsepcl 15417 bj-2inf 15430 bj-inf2vnlem2 15463 |
Copyright terms: Public domain | W3C validator |