![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbii | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min | ⊢ 𝜓 |
mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbii | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.26dc 908 orandc 941 19.9ht 1652 ax11v2 1831 ax11v 1838 ax11ev 1839 equs5or 1841 nfsbxy 1958 nfsbxyt 1959 nfabdw 2355 eqvisset 2770 vtoclgf 2819 vtoclg1f 2820 eueq3dc 2935 mo2icl 2940 csbiegf 3125 un00 3494 sneqr 3787 preqr1 3795 preq12b 3797 prel12 3798 nfopd 3822 ssex 4167 exmidundif 4236 iunpw 4512 nfimad 5015 dfrel2 5117 funsng 5301 cnvresid 5329 nffvd 5567 fnbrfvb 5598 funfvop 5671 acexmidlema 5910 tposf12 6324 supsnti 7066 exmidonfinlem 7255 sucpw1ne3 7294 sucpw1nel3 7295 recidnq 7455 ltaddnq 7469 ltadd1sr 7838 suplocsrlempr 7869 pncan3 8229 divcanap2 8701 ltp1 8865 ltm1 8867 recreclt 8921 nn0ind-raph 9437 2tnp1ge0ge0 10373 iswrdiz 10924 fsumcnv 11583 fprodcnv 11771 ef01bndlem 11902 sin01gt0 11908 cos01gt0 11909 ltoddhalfle 12037 bezoutlemnewy 12136 isprm5 12283 4sqlem12 12543 gsumval2 12983 nmznsg 13286 tangtx 15014 gausslemma2dlem1a 15215 lgseisenlem4 15230 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 bdsepnft 15449 bdssex 15464 bj-inex 15469 bj-d0clsepcl 15487 bj-2inf 15500 bj-inf2vnlem2 15533 |
Copyright terms: Public domain | W3C validator |