| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | GIF version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min | ⊢ 𝜓 |
| mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbii | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 911 orandc 944 19.9ht 1667 ax11v2 1846 ax11v 1853 ax11ev 1854 equs5or 1856 nfsbxy 1973 nfsbxyt 1974 nfabdw 2371 eqvisset 2790 vtoclgf 2839 vtoclg1f 2840 eueq3dc 2957 mo2icl 2962 csbiegf 3148 un00 3518 sneqr 3817 preqr1 3825 preq12b 3827 prel12 3828 nfopd 3853 ssex 4200 exmidundif 4269 iunpw 4548 nfimad 5053 dfrel2 5155 funsng 5343 cnvresid 5371 nffvd 5615 fnbrfvb 5646 funfvop 5720 acexmidlema 5965 tposf12 6385 supsnti 7140 pr2cv1 7336 exmidonfinlem 7339 sucpw1ne3 7385 sucpw1nel3 7386 recidnq 7548 ltaddnq 7562 ltadd1sr 7931 suplocsrlempr 7962 pncan3 8322 divcanap2 8795 ltp1 8959 ltm1 8961 recreclt 9015 nn0ind-raph 9532 2tnp1ge0ge0 10488 iswrdiz 11045 fsumcnv 11914 fprodcnv 12102 ef01bndlem 12233 sin01gt0 12239 cos01gt0 12240 ltoddhalfle 12370 bezoutlemnewy 12483 isprm5 12630 4sqlem12 12891 gsumval2 13396 nmznsg 13716 tangtx 15477 gausslemma2dlem1a 15702 lgseisenlem4 15717 2lgslem3a 15737 2lgslem3b 15738 2lgslem3c 15739 2lgslem3d 15740 bdsepnft 16160 bdssex 16175 bj-inex 16180 bj-d0clsepcl 16198 bj-2inf 16211 bj-inf2vnlem2 16244 |
| Copyright terms: Public domain | W3C validator |