| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbii | GIF version | ||
| Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mpbii.min | ⊢ 𝜓 |
| mpbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbii | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbii.min | . . 3 ⊢ 𝜓 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | mpbii.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.26dc 912 orandc 945 19.9ht 1687 ax11v2 1866 ax11v 1873 ax11ev 1874 equs5or 1876 nfsbxy 1993 nfsbxyt 1994 nfabdw 2391 eqvisset 2810 vtoclgf 2859 vtoclg1f 2860 eueq3dc 2977 mo2icl 2982 csbiegf 3168 un00 3538 sneqr 3838 preqr1 3846 preq12b 3848 prel12 3849 nfopd 3874 ssex 4221 exmidundif 4290 iunpw 4571 nfimad 5077 dfrel2 5179 funsng 5367 cnvresid 5395 nffvd 5641 fnbrfvb 5674 funfvop 5749 acexmidlema 5998 tposf12 6421 supsnti 7180 pr2cv1 7376 exmidonfinlem 7379 sucpw1ne3 7425 sucpw1nel3 7426 recidnq 7588 ltaddnq 7602 ltadd1sr 7971 suplocsrlempr 8002 pncan3 8362 divcanap2 8835 ltp1 8999 ltm1 9001 recreclt 9055 nn0ind-raph 9572 2tnp1ge0ge0 10529 iswrdiz 11086 fsumcnv 11956 fprodcnv 12144 ef01bndlem 12275 sin01gt0 12281 cos01gt0 12282 ltoddhalfle 12412 bezoutlemnewy 12525 isprm5 12672 4sqlem12 12933 gsumval2 13438 nmznsg 13758 tangtx 15520 gausslemma2dlem1a 15745 lgseisenlem4 15760 2lgslem3a 15780 2lgslem3b 15781 2lgslem3c 15782 2lgslem3d 15783 bdsepnft 16274 bdssex 16289 bj-inex 16294 bj-d0clsepcl 16312 bj-2inf 16325 bj-inf2vnlem2 16358 |
| Copyright terms: Public domain | W3C validator |