ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplimdc GIF version

Theorem simplimdc 855
Description: Simplification for a decidable proposition. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
simplimdc (DECID 𝜑 → (¬ (𝜑𝜓) → 𝜑))

Proof of Theorem simplimdc
StepHypRef Expression
1 pm2.21 612 . 2 𝜑 → (𝜑𝜓))
2 con1dc 851 . 2 (DECID 𝜑 → ((¬ 𝜑 → (𝜑𝜓)) → (¬ (𝜑𝜓) → 𝜑)))
31, 2mpi 15 1 (DECID 𝜑 → (¬ (𝜑𝜓) → 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  pm2.5gdc  861  dfandc  879  pm4.79dc  898
  Copyright terms: Public domain W3C validator