ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.74 GIF version

Theorem pm2.74 802
Description: Theorem *2.74 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
pm2.74 ((𝜓𝜑) → (((𝜑𝜓) ∨ 𝜒) → (𝜑𝜒)))

Proof of Theorem pm2.74
StepHypRef Expression
1 idd 21 . . 3 ((𝜓𝜑) → (𝜑𝜑))
2 id 19 . . 3 ((𝜓𝜑) → (𝜓𝜑))
31, 2jaod 712 . 2 ((𝜓𝜑) → ((𝜑𝜓) → 𝜑))
43orim1d 782 1 ((𝜓𝜑) → (((𝜑𝜓) ∨ 𝜒) → (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator