| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm2.74 | GIF version | ||
| Description: Theorem *2.74 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| pm2.74 | ⊢ ((𝜓 → 𝜑) → (((𝜑 ∨ 𝜓) ∨ 𝜒) → (𝜑 ∨ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | idd 21 | . . 3 ⊢ ((𝜓 → 𝜑) → (𝜑 → 𝜑)) | |
| 2 | id 19 | . . 3 ⊢ ((𝜓 → 𝜑) → (𝜓 → 𝜑)) | |
| 3 | 1, 2 | jaod 718 | . 2 ⊢ ((𝜓 → 𝜑) → ((𝜑 ∨ 𝜓) → 𝜑)) | 
| 4 | 3 | orim1d 788 | 1 ⊢ ((𝜓 → 𝜑) → (((𝜑 ∨ 𝜓) ∨ 𝜒) → (𝜑 ∨ 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |