Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.74 | GIF version |
Description: Theorem *2.74 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm2.74 | ⊢ ((𝜓 → 𝜑) → (((𝜑 ∨ 𝜓) ∨ 𝜒) → (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . . 3 ⊢ ((𝜓 → 𝜑) → (𝜑 → 𝜑)) | |
2 | id 19 | . . 3 ⊢ ((𝜓 → 𝜑) → (𝜓 → 𝜑)) | |
3 | 1, 2 | jaod 712 | . 2 ⊢ ((𝜓 → 𝜑) → ((𝜑 ∨ 𝜓) → 𝜑)) |
4 | 3 | orim1d 782 | 1 ⊢ ((𝜓 → 𝜑) → (((𝜑 ∨ 𝜓) ∨ 𝜒) → (𝜑 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |