| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd | ⊢ (𝜑 → (𝜓 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 727 pm2.621 748 orim1d 788 orim2d 789 pm2.63 801 pm2.74 808 simprimdc 860 oplem1 977 equsex 1742 equsexd 1743 r19.36av 2648 r19.44av 2656 r19.45av 2657 reuss 3445 opthpr 3803 relop 4817 swoord2 6631 indpi 7428 lelttr 8134 elnnz 9355 ztri3or0 9387 xrlelttr 9900 icossicc 10054 iocssicc 10055 ioossico 10056 lmconst 14560 cnptopresti 14582 sslm 14591 bj-exlimmp 15523 |
| Copyright terms: Public domain | W3C validator |