| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd | ⊢ (𝜑 → (𝜓 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 731 pm2.621 752 orim1d 792 orim2d 793 pm2.63 805 pm2.74 812 simprimdc 864 oplem1 981 equsex 1774 equsexd 1775 r19.36av 2682 r19.44av 2690 r19.45av 2691 reuss 3485 opthpr 3850 relop 4872 swoord2 6718 indpi 7537 lelttr 8243 elnnz 9464 ztri3or0 9496 xrlelttr 10010 icossicc 10164 iocssicc 10165 ioossico 10166 lmconst 14898 cnptopresti 14920 sslm 14929 bj-exlimmp 16157 |
| Copyright terms: Public domain | W3C validator |