| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd | ⊢ (𝜑 → (𝜓 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 728 pm2.621 749 orim1d 789 orim2d 790 pm2.63 802 pm2.74 809 simprimdc 861 oplem1 978 equsex 1752 equsexd 1753 r19.36av 2658 r19.44av 2666 r19.45av 2667 reuss 3455 opthpr 3815 relop 4832 swoord2 6657 indpi 7462 lelttr 8168 elnnz 9389 ztri3or0 9421 xrlelttr 9935 icossicc 10089 iocssicc 10090 ioossico 10091 lmconst 14732 cnptopresti 14754 sslm 14763 bj-exlimmp 15779 |
| Copyright terms: Public domain | W3C validator |