![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > idd | GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd | ⊢ (𝜑 → (𝜓 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 727 pm2.621 748 orim1d 788 orim2d 789 pm2.63 801 pm2.74 808 simprimdc 860 oplem1 977 equsex 1739 equsexd 1740 r19.36av 2645 r19.44av 2653 r19.45av 2654 reuss 3441 opthpr 3799 relop 4813 swoord2 6619 indpi 7404 lelttr 8110 elnnz 9330 ztri3or0 9362 xrlelttr 9875 icossicc 10029 iocssicc 10030 ioossico 10031 lmconst 14395 cnptopresti 14417 sslm 14426 bj-exlimmp 15331 |
Copyright terms: Public domain | W3C validator |