![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > idd | GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd | ⊢ (𝜑 → (𝜓 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 726 pm2.621 747 orim1d 787 orim2d 788 pm2.63 800 pm2.74 807 simprimdc 859 oplem1 975 equsex 1728 equsexd 1729 r19.36av 2628 r19.44av 2636 r19.45av 2637 reuss 3418 opthpr 3774 relop 4779 swoord2 6567 indpi 7343 lelttr 8048 elnnz 9265 ztri3or0 9297 xrlelttr 9808 icossicc 9962 iocssicc 9963 ioossico 9964 lmconst 13755 cnptopresti 13777 sslm 13786 bj-exlimmp 14560 |
Copyright terms: Public domain | W3C validator |