ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idd GIF version

Theorem idd 21
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
idd (𝜑 → (𝜓𝜓))

Proof of Theorem idd
StepHypRef Expression
1 id 19 . 2 (𝜓𝜓)
21a1i 9 1 (𝜑 → (𝜓𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim1d  75  ancld  325  ancrd  326  anim12d  335  anim1d  336  anim2d  337  orel2  727  pm2.621  748  orim1d  788  orim2d  789  pm2.63  801  pm2.74  808  simprimdc  860  oplem1  977  equsex  1742  equsexd  1743  r19.36av  2648  r19.44av  2656  r19.45av  2657  reuss  3445  opthpr  3803  relop  4817  swoord2  6631  indpi  7426  lelttr  8132  elnnz  9353  ztri3or0  9385  xrlelttr  9898  icossicc  10052  iocssicc  10053  ioossico  10054  lmconst  14536  cnptopresti  14558  sslm  14567  bj-exlimmp  15499
  Copyright terms: Public domain W3C validator