Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > idd | GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd | ⊢ (𝜑 → (𝜓 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 75 ancld 323 ancrd 324 anim12d 333 anim1d 334 anim2d 335 orel2 716 pm2.621 737 orim1d 777 orim2d 778 pm2.63 790 pm2.74 797 simprimdc 849 oplem1 965 equsex 1716 equsexd 1717 r19.36av 2617 r19.44av 2625 r19.45av 2626 reuss 3403 opthpr 3752 relop 4754 swoord2 6531 indpi 7283 lelttr 7987 elnnz 9201 ztri3or0 9233 xrlelttr 9742 icossicc 9896 iocssicc 9897 ioossico 9898 lmconst 12856 cnptopresti 12878 sslm 12887 bj-exlimmp 13650 |
Copyright terms: Public domain | W3C validator |