| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idd | GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| idd | ⊢ (𝜑 → (𝜓 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 730 pm2.621 751 orim1d 791 orim2d 792 pm2.63 804 pm2.74 811 simprimdc 863 oplem1 980 equsex 1754 equsexd 1755 r19.36av 2662 r19.44av 2670 r19.45av 2671 reuss 3465 opthpr 3829 relop 4849 swoord2 6680 indpi 7497 lelttr 8203 elnnz 9424 ztri3or0 9456 xrlelttr 9970 icossicc 10124 iocssicc 10125 ioossico 10126 lmconst 14855 cnptopresti 14877 sslm 14886 bj-exlimmp 16043 |
| Copyright terms: Public domain | W3C validator |