| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > idd | GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) | 
| Ref | Expression | 
|---|---|
| idd | ⊢ (𝜑 → (𝜓 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: imim1d 75 ancld 325 ancrd 326 anim12d 335 anim1d 336 anim2d 337 orel2 727 pm2.621 748 orim1d 788 orim2d 789 pm2.63 801 pm2.74 808 simprimdc 860 oplem1 977 equsex 1742 equsexd 1743 r19.36av 2648 r19.44av 2656 r19.45av 2657 reuss 3444 opthpr 3802 relop 4816 swoord2 6622 indpi 7409 lelttr 8115 elnnz 9336 ztri3or0 9368 xrlelttr 9881 icossicc 10035 iocssicc 10036 ioossico 10037 lmconst 14452 cnptopresti 14474 sslm 14483 bj-exlimmp 15415 | 
| Copyright terms: Public domain | W3C validator |