| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm2.76 | GIF version | ||
| Description: Theorem *2.76 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| pm2.76 | ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 713 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | 
| 3 | orim2 790 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | |
| 4 | 2, 3 | jaoi 717 | 1 ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm2.75 810 pm2.81 812 orimdidc 907 equs5or 1844 | 
| Copyright terms: Public domain | W3C validator |