ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.76 GIF version

Theorem pm2.76 755
Description: Theorem *2.76 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
pm2.76 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem pm2.76
StepHypRef Expression
1 orc 666 . . 3 (𝜑 → (𝜑𝜒))
21a1d 22 . 2 (𝜑 → ((𝜑𝜓) → (𝜑𝜒)))
3 orim2 736 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
42, 3jaoi 669 1 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  pm2.75  756  pm2.81  758  orimdidc  848  equs5or  1755
  Copyright terms: Public domain W3C validator