Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.76 | GIF version |
Description: Theorem *2.76 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm2.76 | ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 707 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
3 | orim2 784 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | |
4 | 2, 3 | jaoi 711 | 1 ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.75 804 pm2.81 806 orimdidc 901 equs5or 1823 |
Copyright terms: Public domain | W3C validator |