![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
Ref | Expression |
---|---|
jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
5 | 2, 4 | jaoi 717 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpjaod 719 jaao 720 orel2 727 pm2.621 748 mtord 784 jaodan 798 pm2.63 801 pm2.74 808 dedlema 971 dedlemb 972 oplem1 977 ifnebibdc 3600 opthpr 3798 exmid1stab 4237 trsucss 4454 ordsucim 4532 onsucelsucr 4540 0elnn 4651 xpsspw 4771 relop 4812 fununi 5322 poxp 6285 nntri1 6549 nnsseleq 6554 nnmordi 6569 nnaordex 6581 nnm00 6583 swoord2 6617 nneneq 6913 exmidonfinlem 7253 elni2 7374 prubl 7546 distrlem4prl 7644 distrlem4pru 7645 ltxrlt 8085 recexre 8597 remulext1 8618 mulext1 8631 un0addcl 9273 un0mulcl 9274 elnnz 9327 zleloe 9364 zindd 9435 uzsplit 10158 fzm1 10166 expcl2lemap 10622 expnegzap 10644 expaddzap 10654 expmulzap 10656 qsqeqor 10721 nn0opthd 10793 facdiv 10809 facwordi 10811 bcpasc 10837 recvguniq 11139 absexpzap 11224 maxabslemval 11352 xrmaxiflemval 11393 sumrbdclem 11520 summodc 11526 zsumdc 11527 prodrbdclem 11714 zproddc 11722 prodssdc 11732 fprodcl2lem 11748 fprodsplitsn 11776 ordvdsmul 11977 gcdaddm 12121 nninfctlemfo 12177 lcmdvds 12217 dvdsprime 12260 prmdvdsexpr 12288 prmfac1 12290 pythagtriplem2 12404 4sqlem11 12539 unct 12599 domneq0 13768 baspartn 14218 reopnap 14706 coseq0q4123 14969 lgsdir2lem2 15145 decidin 15289 bj-charfun 15299 bj-nntrans 15443 bj-nnelirr 15445 bj-findis 15471 triap 15519 |
Copyright terms: Public domain | W3C validator |