| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| Ref | Expression |
|---|---|
| jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
| 5 | 2, 4 | jaoi 717 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
| 6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 719 jaao 720 orel2 727 pm2.621 748 mtord 784 jaodan 798 pm2.63 801 pm2.74 808 dedlema 971 dedlemb 972 oplem1 977 ifnebibdc 3605 opthpr 3803 exmid1stab 4242 trsucss 4459 ordsucim 4537 onsucelsucr 4545 0elnn 4656 xpsspw 4776 relop 4817 fununi 5327 poxp 6299 nntri1 6563 nnsseleq 6568 nnmordi 6583 nnaordex 6595 nnm00 6597 swoord2 6631 nneneq 6927 exmidonfinlem 7274 elni2 7400 prubl 7572 distrlem4prl 7670 distrlem4pru 7671 ltxrlt 8111 recexre 8624 remulext1 8645 mulext1 8658 un0addcl 9301 un0mulcl 9302 elnnz 9355 zleloe 9392 zindd 9463 uzsplit 10186 fzm1 10194 expcl2lemap 10662 expnegzap 10684 expaddzap 10694 expmulzap 10696 qsqeqor 10761 nn0opthd 10833 facdiv 10849 facwordi 10851 bcpasc 10877 recvguniq 11179 absexpzap 11264 maxabslemval 11392 xrmaxiflemval 11434 sumrbdclem 11561 summodc 11567 zsumdc 11568 prodrbdclem 11755 zproddc 11763 prodssdc 11773 fprodcl2lem 11789 fprodsplitsn 11817 ordvdsmul 12018 gcdaddm 12178 nninfctlemfo 12234 lcmdvds 12274 dvdsprime 12317 prmdvdsexpr 12345 prmfac1 12347 pythagtriplem2 12462 4sqlem11 12597 unct 12686 domneq0 13906 baspartn 14394 reopnap 14890 coseq0q4123 15178 lgsdir2lem2 15378 decidin 15551 bj-charfun 15561 bj-nntrans 15705 bj-nnelirr 15707 bj-findis 15733 triap 15786 |
| Copyright terms: Public domain | W3C validator |