![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
Ref | Expression |
---|---|
jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
5 | 2, 4 | jaoi 716 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpjaod 718 jaao 719 orel2 726 pm2.621 747 mtord 783 jaodan 797 pm2.63 800 pm2.74 807 dedlema 969 dedlemb 970 oplem1 975 opthpr 3773 exmid1stab 4209 trsucss 4424 ordsucim 4500 onsucelsucr 4508 0elnn 4619 xpsspw 4739 relop 4778 fununi 5285 poxp 6233 nntri1 6497 nnsseleq 6502 nnmordi 6517 nnaordex 6529 nnm00 6531 swoord2 6565 nneneq 6857 exmidonfinlem 7192 elni2 7313 prubl 7485 distrlem4prl 7583 distrlem4pru 7584 ltxrlt 8023 recexre 8535 remulext1 8556 mulext1 8569 un0addcl 9209 un0mulcl 9210 elnnz 9263 zleloe 9300 zindd 9371 uzsplit 10092 fzm1 10100 expcl2lemap 10532 expnegzap 10554 expaddzap 10564 expmulzap 10566 qsqeqor 10631 nn0opthd 10702 facdiv 10718 facwordi 10720 bcpasc 10746 recvguniq 11004 absexpzap 11089 maxabslemval 11217 xrmaxiflemval 11258 sumrbdclem 11385 summodc 11391 zsumdc 11392 prodrbdclem 11579 zproddc 11587 prodssdc 11597 fprodcl2lem 11613 fprodsplitsn 11641 ordvdsmul 11841 gcdaddm 11985 lcmdvds 12079 dvdsprime 12122 prmdvdsexpr 12150 prmfac1 12152 pythagtriplem2 12266 unct 12443 baspartn 13553 reopnap 14041 coseq0q4123 14258 lgsdir2lem2 14433 decidin 14552 bj-charfun 14562 bj-nntrans 14706 bj-nnelirr 14708 bj-findis 14734 triap 14780 |
Copyright terms: Public domain | W3C validator |