Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
Ref | Expression |
---|---|
jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
5 | 2, 4 | jaoi 711 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpjaod 713 jaao 714 orel2 721 pm2.621 742 mtord 778 jaodan 792 pm2.63 795 pm2.74 802 dedlema 964 dedlemb 965 oplem1 970 opthpr 3759 trsucss 4408 ordsucim 4484 onsucelsucr 4492 0elnn 4603 xpsspw 4723 relop 4761 fununi 5266 poxp 6211 nntri1 6475 nnsseleq 6480 nnmordi 6495 nnaordex 6507 nnm00 6509 swoord2 6543 nneneq 6835 exmidonfinlem 7170 elni2 7276 prubl 7448 distrlem4prl 7546 distrlem4pru 7547 ltxrlt 7985 recexre 8497 remulext1 8518 mulext1 8531 un0addcl 9168 un0mulcl 9169 elnnz 9222 zleloe 9259 zindd 9330 uzsplit 10048 fzm1 10056 expcl2lemap 10488 expnegzap 10510 expaddzap 10520 expmulzap 10522 qsqeqor 10586 nn0opthd 10656 facdiv 10672 facwordi 10674 bcpasc 10700 recvguniq 10959 absexpzap 11044 maxabslemval 11172 xrmaxiflemval 11213 sumrbdclem 11340 summodc 11346 zsumdc 11347 prodrbdclem 11534 zproddc 11542 prodssdc 11552 fprodcl2lem 11568 fprodsplitsn 11596 ordvdsmul 11796 gcdaddm 11939 lcmdvds 12033 dvdsprime 12076 prmdvdsexpr 12104 prmfac1 12106 pythagtriplem2 12220 unct 12397 baspartn 12842 reopnap 13332 coseq0q4123 13549 lgsdir2lem2 13724 decidin 13832 bj-charfun 13842 bj-nntrans 13986 bj-nnelirr 13988 bj-findis 14014 exmid1stab 14033 triap 14061 |
Copyright terms: Public domain | W3C validator |