| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| Ref | Expression |
|---|---|
| jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
| 5 | 2, 4 | jaoi 721 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
| 6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 723 jaao 724 orel2 731 pm2.621 752 mtord 788 jaodan 802 pm2.63 805 pm2.74 812 dedlema 975 dedlemb 976 oplem1 981 ifnebibdc 3648 opthpr 3849 exmid1stab 4291 trsucss 4513 ordsucim 4591 onsucelsucr 4599 0elnn 4710 xpsspw 4830 relop 4871 fununi 5388 poxp 6376 nntri1 6640 nnsseleq 6645 nnmordi 6660 nnaordex 6672 nnm00 6674 swoord2 6708 nneneq 7014 exmidonfinlem 7367 elni2 7497 prubl 7669 distrlem4prl 7767 distrlem4pru 7768 ltxrlt 8208 recexre 8721 remulext1 8742 mulext1 8755 un0addcl 9398 un0mulcl 9399 elnnz 9452 zleloe 9489 zindd 9561 uzsplit 10284 fzm1 10292 expcl2lemap 10768 expnegzap 10790 expaddzap 10800 expmulzap 10802 qsqeqor 10867 nn0opthd 10939 facdiv 10955 facwordi 10957 bcpasc 10983 recvguniq 11501 absexpzap 11586 maxabslemval 11714 xrmaxiflemval 11756 sumrbdclem 11883 summodc 11889 zsumdc 11890 prodrbdclem 12077 zproddc 12085 prodssdc 12095 fprodcl2lem 12111 fprodsplitsn 12139 ordvdsmul 12340 gcdaddm 12500 nninfctlemfo 12556 lcmdvds 12596 dvdsprime 12639 prmdvdsexpr 12667 prmfac1 12669 pythagtriplem2 12784 4sqlem11 12919 unct 13008 domneq0 14230 baspartn 14718 reopnap 15214 coseq0q4123 15502 lgsdir2lem2 15702 upgrpredgv 15938 decidin 16119 bj-charfun 16128 bj-nntrans 16272 bj-nnelirr 16274 bj-findis 16300 triap 16356 |
| Copyright terms: Public domain | W3C validator |