Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
Ref | Expression |
---|---|
jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
5 | 2, 4 | jaoi 706 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpjaod 708 jaao 709 orel2 716 pm2.621 737 mtord 773 jaodan 787 pm2.63 790 pm2.74 797 dedlema 959 dedlemb 960 oplem1 965 opthpr 3752 trsucss 4401 ordsucim 4477 onsucelsucr 4485 0elnn 4596 xpsspw 4716 relop 4754 fununi 5256 poxp 6200 nntri1 6464 nnsseleq 6469 nnmordi 6484 nnaordex 6495 nnm00 6497 swoord2 6531 nneneq 6823 exmidonfinlem 7149 elni2 7255 prubl 7427 distrlem4prl 7525 distrlem4pru 7526 ltxrlt 7964 recexre 8476 remulext1 8497 mulext1 8510 un0addcl 9147 un0mulcl 9148 elnnz 9201 zleloe 9238 zindd 9309 uzsplit 10027 fzm1 10035 expcl2lemap 10467 expnegzap 10489 expaddzap 10499 expmulzap 10501 qsqeqor 10565 nn0opthd 10635 facdiv 10651 facwordi 10653 bcpasc 10679 recvguniq 10937 absexpzap 11022 maxabslemval 11150 xrmaxiflemval 11191 sumrbdclem 11318 summodc 11324 zsumdc 11325 prodrbdclem 11512 zproddc 11520 prodssdc 11530 fprodcl2lem 11546 fprodsplitsn 11574 ordvdsmul 11774 gcdaddm 11917 lcmdvds 12011 dvdsprime 12054 prmdvdsexpr 12082 prmfac1 12084 pythagtriplem2 12198 unct 12375 baspartn 12688 reopnap 13178 coseq0q4123 13395 lgsdir2lem2 13570 decidin 13678 bj-charfun 13689 bj-nntrans 13833 bj-nnelirr 13835 bj-findis 13861 exmid1stab 13880 triap 13908 |
Copyright terms: Public domain | W3C validator |