| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| Ref | Expression |
|---|---|
| jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
| 5 | 2, 4 | jaoi 718 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
| 6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 720 jaao 721 orel2 728 pm2.621 749 mtord 785 jaodan 799 pm2.63 802 pm2.74 809 dedlema 972 dedlemb 973 oplem1 978 ifnebibdc 3619 opthpr 3818 exmid1stab 4259 trsucss 4477 ordsucim 4555 onsucelsucr 4563 0elnn 4674 xpsspw 4794 relop 4835 fununi 5350 poxp 6330 nntri1 6594 nnsseleq 6599 nnmordi 6614 nnaordex 6626 nnm00 6628 swoord2 6662 nneneq 6968 exmidonfinlem 7316 elni2 7442 prubl 7614 distrlem4prl 7712 distrlem4pru 7713 ltxrlt 8153 recexre 8666 remulext1 8687 mulext1 8700 un0addcl 9343 un0mulcl 9344 elnnz 9397 zleloe 9434 zindd 9506 uzsplit 10229 fzm1 10237 expcl2lemap 10713 expnegzap 10735 expaddzap 10745 expmulzap 10747 qsqeqor 10812 nn0opthd 10884 facdiv 10900 facwordi 10902 bcpasc 10928 recvguniq 11376 absexpzap 11461 maxabslemval 11589 xrmaxiflemval 11631 sumrbdclem 11758 summodc 11764 zsumdc 11765 prodrbdclem 11952 zproddc 11960 prodssdc 11970 fprodcl2lem 11986 fprodsplitsn 12014 ordvdsmul 12215 gcdaddm 12375 nninfctlemfo 12431 lcmdvds 12471 dvdsprime 12514 prmdvdsexpr 12542 prmfac1 12544 pythagtriplem2 12659 4sqlem11 12794 unct 12883 domneq0 14104 baspartn 14592 reopnap 15088 coseq0q4123 15376 lgsdir2lem2 15576 decidin 15867 bj-charfun 15877 bj-nntrans 16021 bj-nnelirr 16023 bj-findis 16049 triap 16103 |
| Copyright terms: Public domain | W3C validator |