Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
Ref | Expression |
---|---|
jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
5 | 2, 4 | jaoi 716 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpjaod 718 jaao 719 orel2 726 pm2.621 747 mtord 783 jaodan 797 pm2.63 800 pm2.74 807 dedlema 969 dedlemb 970 oplem1 975 opthpr 3768 trsucss 4417 ordsucim 4493 onsucelsucr 4501 0elnn 4612 xpsspw 4732 relop 4770 fununi 5276 poxp 6223 nntri1 6487 nnsseleq 6492 nnmordi 6507 nnaordex 6519 nnm00 6521 swoord2 6555 nneneq 6847 exmidonfinlem 7182 elni2 7288 prubl 7460 distrlem4prl 7558 distrlem4pru 7559 ltxrlt 7997 recexre 8509 remulext1 8530 mulext1 8543 un0addcl 9182 un0mulcl 9183 elnnz 9236 zleloe 9273 zindd 9344 uzsplit 10062 fzm1 10070 expcl2lemap 10502 expnegzap 10524 expaddzap 10534 expmulzap 10536 qsqeqor 10600 nn0opthd 10670 facdiv 10686 facwordi 10688 bcpasc 10714 recvguniq 10972 absexpzap 11057 maxabslemval 11185 xrmaxiflemval 11226 sumrbdclem 11353 summodc 11359 zsumdc 11360 prodrbdclem 11547 zproddc 11555 prodssdc 11565 fprodcl2lem 11581 fprodsplitsn 11609 ordvdsmul 11809 gcdaddm 11952 lcmdvds 12046 dvdsprime 12089 prmdvdsexpr 12117 prmfac1 12119 pythagtriplem2 12233 unct 12410 baspartn 13119 reopnap 13609 coseq0q4123 13826 lgsdir2lem2 14001 decidin 14109 bj-charfun 14119 bj-nntrans 14263 bj-nnelirr 14265 bj-findis 14291 exmid1stab 14310 triap 14338 |
Copyright terms: Public domain | W3C validator |