![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaod | GIF version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
Ref | Expression |
---|---|
jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
5 | 2, 4 | jaoi 688 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 680 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpjaod 690 jaao 691 orel2 698 pm2.621 719 mtord 755 jaodan 769 pm2.63 772 pm2.74 779 dedlema 936 dedlemb 937 oplem1 942 opthpr 3665 trsucss 4305 ordsucim 4376 onsucelsucr 4384 0elnn 4492 xpsspw 4611 relop 4649 fununi 5149 poxp 6083 nntri1 6346 nnsseleq 6351 nnmordi 6366 nnaordex 6377 nnm00 6379 swoord2 6413 nneneq 6704 elni2 7070 prubl 7242 distrlem4prl 7340 distrlem4pru 7341 ltxrlt 7754 recexre 8258 remulext1 8279 mulext1 8292 un0addcl 8914 un0mulcl 8915 elnnz 8968 zleloe 9005 zindd 9073 uzsplit 9765 fzm1 9773 expcl2lemap 10198 expnegzap 10220 expaddzap 10230 expmulzap 10232 nn0opthd 10361 facdiv 10377 facwordi 10379 bcpasc 10405 recvguniq 10659 absexpzap 10744 maxabslemval 10872 xrmaxiflemval 10911 sumrbdclem 11037 summodc 11044 zsumdc 11045 ordvdsmul 11382 gcdaddm 11520 lcmdvds 11606 dvdsprime 11649 prmdvdsexpr 11674 prmfac1 11676 unct 11797 baspartn 12060 decidin 12696 bj-nntrans 12841 bj-nnelirr 12843 bj-findis 12869 exmid1stab 12887 triap 12916 |
Copyright terms: Public domain | W3C validator |