| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | GIF version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| Ref | Expression |
|---|---|
| jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | jaod.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 4 | 3 | com12 30 | . . 3 ⊢ (𝜃 → (𝜑 → 𝜒)) |
| 5 | 2, 4 | jaoi 717 | . 2 ⊢ ((𝜓 ∨ 𝜃) → (𝜑 → 𝜒)) |
| 6 | 5 | com12 30 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 719 jaao 720 orel2 727 pm2.621 748 mtord 784 jaodan 798 pm2.63 801 pm2.74 808 dedlema 971 dedlemb 972 oplem1 977 ifnebibdc 3605 opthpr 3803 exmid1stab 4242 trsucss 4459 ordsucim 4537 onsucelsucr 4545 0elnn 4656 xpsspw 4776 relop 4817 fununi 5327 poxp 6299 nntri1 6563 nnsseleq 6568 nnmordi 6583 nnaordex 6595 nnm00 6597 swoord2 6631 nneneq 6927 exmidonfinlem 7272 elni2 7398 prubl 7570 distrlem4prl 7668 distrlem4pru 7669 ltxrlt 8109 recexre 8622 remulext1 8643 mulext1 8656 un0addcl 9299 un0mulcl 9300 elnnz 9353 zleloe 9390 zindd 9461 uzsplit 10184 fzm1 10192 expcl2lemap 10660 expnegzap 10682 expaddzap 10692 expmulzap 10694 qsqeqor 10759 nn0opthd 10831 facdiv 10847 facwordi 10849 bcpasc 10875 recvguniq 11177 absexpzap 11262 maxabslemval 11390 xrmaxiflemval 11432 sumrbdclem 11559 summodc 11565 zsumdc 11566 prodrbdclem 11753 zproddc 11761 prodssdc 11771 fprodcl2lem 11787 fprodsplitsn 11815 ordvdsmul 12016 gcdaddm 12176 nninfctlemfo 12232 lcmdvds 12272 dvdsprime 12315 prmdvdsexpr 12343 prmfac1 12345 pythagtriplem2 12460 4sqlem11 12595 unct 12684 domneq0 13904 baspartn 14370 reopnap 14866 coseq0q4123 15154 lgsdir2lem2 15354 decidin 15527 bj-charfun 15537 bj-nntrans 15681 bj-nnelirr 15683 bj-findis 15709 triap 15760 |
| Copyright terms: Public domain | W3C validator |