| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm3.48 | GIF version | ||
| Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) (Revised by NM, 1-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| pm3.48 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 713 | . . 3 ⊢ (𝜓 → (𝜓 ∨ 𝜃)) | |
| 2 | 1 | imim2i 12 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∨ 𝜃))) | 
| 3 | olc 712 | . . 3 ⊢ (𝜃 → (𝜓 ∨ 𝜃)) | |
| 4 | 3 | imim2i 12 | . 2 ⊢ ((𝜒 → 𝜃) → (𝜒 → (𝜓 ∨ 𝜃))) | 
| 5 | 2, 4 | jaao 720 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: orim12d 787 | 
| Copyright terms: Public domain | W3C validator |