Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm3.48 | GIF version |
Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) (Revised by NM, 1-Dec-2012.) |
Ref | Expression |
---|---|
pm3.48 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 707 | . . 3 ⊢ (𝜓 → (𝜓 ∨ 𝜃)) | |
2 | 1 | imim2i 12 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∨ 𝜃))) |
3 | olc 706 | . . 3 ⊢ (𝜃 → (𝜓 ∨ 𝜃)) | |
4 | 3 | imim2i 12 | . 2 ⊢ ((𝜒 → 𝜃) → (𝜒 → (𝜓 ∨ 𝜃))) |
5 | 2, 4 | jaao 714 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orim12d 781 |
Copyright terms: Public domain | W3C validator |