| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaao | GIF version | ||
| Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999.) |
| Ref | Expression |
|---|---|
| jaao.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaao.2 | ⊢ (𝜃 → (𝜏 → 𝜒)) |
| Ref | Expression |
|---|---|
| jaao | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∨ 𝜏) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaao.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜒)) |
| 3 | jaao.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜒)) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜏 → 𝜒)) |
| 5 | 2, 4 | jaod 718 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∨ 𝜏) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm3.48 786 prlem1 975 nford 1581 funun 5302 poxp 6290 nntri3or 6551 |
| Copyright terms: Public domain | W3C validator |