ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim12d GIF version

Theorem orim12d 776
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 10-May-1994.)
Hypotheses
Ref Expression
orim12d.1 (𝜑 → (𝜓𝜒))
orim12d.2 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
orim12d (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))

Proof of Theorem orim12d
StepHypRef Expression
1 orim12d.1 . 2 (𝜑 → (𝜓𝜒))
2 orim12d.2 . 2 (𝜑 → (𝜃𝜏))
3 pm3.48 775 . 2 (((𝜓𝜒) ∧ (𝜃𝜏)) → ((𝜓𝜃) → (𝜒𝜏)))
41, 2, 3syl2anc 409 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  orim1d  777  orim2d  778  3orim123d  1309  19.33b2  1616  eqifdc  3552  preq12b  3747  prel12  3748  exmidsssnc  4179  funun  5229  nnsucelsuc  6453  nnaord  6471  nnmord  6479  swoer  6523  fidceq  6829  fin0or  6846  enomnilem  7096  exmidomni  7100  fodjuomnilemres  7106  ltsopr  7531  cauappcvgprlemloc  7587  caucvgprlemloc  7610  caucvgprprlemloc  7638  suplocexprlemloc  7656  mulextsr1lem  7715  suplocsrlemb  7741  axpre-suploclemres  7836  reapcotr  8490  apcotr  8499  mulext1  8504  mulext  8506  mul0eqap  8561  peano2z  9221  zeo  9290  uzm1  9490  eluzdc  9542  fzospliti  10105  frec2uzltd  10332  absext  10999  qabsor  11011  maxleast  11149  dvdslelemd  11775  odd2np1lem  11803  odd2np1  11804  isprm6  12073  pythagtrip  12209  pc2dvds  12255  ennnfonelemrnh  12343  dedekindeulemloc  13195  suplociccreex  13200  dedekindicclemloc  13204  ivthinclemloc  13217  cos11  13372  uzdcinzz  13572  bj-charfunr  13585  bj-findis  13754  nninfomnilem  13791  isomninnlem  13802
  Copyright terms: Public domain W3C validator