![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > olc | GIF version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) | |
2 | jaob 711 | . . 3 ⊢ (((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) ↔ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑)))) | |
3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑))) |
4 | 3 | simpri 113 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: oibabs 715 pm1.4 728 olci 733 pm2.07 738 pm2.46 740 biorf 745 pm1.5 766 pm2.41 777 pm4.78i 783 pm3.48 786 ordi 817 andi 819 pm4.72 828 stdcn 848 pm2.54dc 892 pm2.85dc 906 dcor 937 dedlemb 972 xoranor 1388 19.33 1495 hbor 1557 nford 1578 19.30dc 1638 19.43 1639 19.32r 1691 euor2 2100 mooran2 2115 r19.32r 2640 undif3ss 3420 undif4 3509 issod 4350 onsucelsucexmid 4562 sucprcreg 4581 0elnn 4651 acexmidlemph 5911 nntri3or 6546 swoord1 6616 swoord2 6617 exmidaclem 7268 exmidontri2or 7303 addlocprlem 7595 nqprloc 7605 apreap 8606 zletric 9361 zlelttric 9362 zmulcl 9370 zdceq 9392 zdcle 9393 zdclt 9394 nn0lt2 9398 elnn1uz2 9672 mnflt 9849 mnfltpnf 9851 xrltso 9862 fzdcel 10106 fzm1 10166 qletric 10311 qlelttric 10312 qdceq 10314 qdclt 10315 qsqeqor 10721 zzlesq 10779 nn0o1gt2 12046 prm23lt5 12401 gausslemma2dlem0f 15170 bj-fadc 15246 decidin 15289 triap 15519 tridceq 15546 |
Copyright terms: Public domain | W3C validator |