| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > olc | GIF version | ||
| Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) | |
| 2 | jaob 711 | . . 3 ⊢ (((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) ↔ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑)))) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑))) |
| 4 | 3 | simpri 113 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: oibabs 715 pm1.4 728 olci 733 pm2.07 738 pm2.46 740 biorf 745 pm1.5 766 pm2.41 777 pm4.78i 783 pm3.48 786 ordi 817 andi 819 pm4.72 828 stdcn 848 pm2.54dc 892 pm2.85dc 906 dcor 937 dedlemb 972 xoranor 1388 19.33 1498 hbor 1560 nford 1581 19.30dc 1641 19.43 1642 19.32r 1694 euor2 2103 mooran2 2118 r19.32r 2643 undif3ss 3425 undif4 3514 issod 4355 onsucelsucexmid 4567 sucprcreg 4586 0elnn 4656 acexmidlemph 5918 nntri3or 6560 swoord1 6630 swoord2 6631 exmidaclem 7291 exmidontri2or 7326 addlocprlem 7619 nqprloc 7629 apreap 8631 zletric 9387 zlelttric 9388 zmulcl 9396 zdceq 9418 zdcle 9419 zdclt 9420 nn0lt2 9424 elnn1uz2 9698 mnflt 9875 mnfltpnf 9877 xrltso 9888 fzdcel 10132 fzm1 10192 qletric 10348 qlelttric 10349 qdceq 10351 qdclt 10352 qsqeqor 10759 zzlesq 10817 nn0o1gt2 12087 prm23lt5 12457 gausslemma2dlem0f 15379 bj-fadc 15484 decidin 15527 triap 15760 tridceq 15787 |
| Copyright terms: Public domain | W3C validator |