| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > olc | GIF version | ||
| Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) | |
| 2 | jaob 712 | . . 3 ⊢ (((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) ↔ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑)))) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑))) |
| 4 | 3 | simpri 113 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: oibabs 716 pm1.4 729 olci 734 pm2.07 739 pm2.46 741 biorf 746 pm1.5 767 pm2.41 778 pm4.78i 784 pm3.48 787 ordi 818 andi 820 pm4.72 829 stdcn 849 pm2.54dc 893 pm2.85dc 907 dcor 938 dedlemb 973 xoranor 1397 19.33 1507 hbor 1569 nford 1590 19.30dc 1650 19.43 1651 19.32r 1703 euor2 2112 mooran2 2127 r19.32r 2652 undif3ss 3434 undif4 3523 issod 4366 onsucelsucexmid 4578 sucprcreg 4597 0elnn 4667 acexmidlemph 5937 nntri3or 6579 swoord1 6649 swoord2 6650 exmidaclem 7320 exmidontri2or 7355 addlocprlem 7648 nqprloc 7658 apreap 8660 zletric 9416 zlelttric 9417 zmulcl 9426 zdceq 9448 zdcle 9449 zdclt 9450 nn0lt2 9454 elnn1uz2 9728 mnflt 9905 mnfltpnf 9907 xrltso 9918 fzdcel 10162 fzm1 10222 qletric 10384 qlelttric 10385 qdceq 10387 qdclt 10388 qsqeqor 10795 zzlesq 10853 nn0o1gt2 12216 prm23lt5 12586 gausslemma2dlem0f 15531 bj-fadc 15690 decidin 15733 triap 15968 tridceq 15995 |
| Copyright terms: Public domain | W3C validator |