Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > olc | GIF version |
Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) | |
2 | jaob 700 | . . 3 ⊢ (((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) ↔ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑)))) | |
3 | 1, 2 | mpbi 144 | . 2 ⊢ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑))) |
4 | 3 | simpri 112 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: oibabs 704 pm1.4 717 olci 722 pm2.07 727 pm2.46 729 biorf 734 pm1.5 755 pm2.41 766 pm4.78i 772 pm3.48 775 ordi 806 andi 808 pm4.72 817 stdcn 837 pm2.54dc 881 pm2.85dc 895 dcor 925 dedlemb 960 xoranor 1367 19.33 1472 hbor 1534 nford 1555 19.30dc 1615 19.43 1616 19.32r 1668 euor2 2072 mooran2 2087 r19.32r 2611 undif3ss 3382 undif4 3470 issod 4296 onsucelsucexmid 4506 sucprcreg 4525 0elnn 4595 acexmidlemph 5834 nntri3or 6457 swoord1 6526 swoord2 6527 exmidaclem 7160 exmidontri2or 7195 addlocprlem 7472 nqprloc 7482 apreap 8481 zletric 9231 zlelttric 9232 zmulcl 9240 zdceq 9262 zdcle 9263 zdclt 9264 nn0lt2 9268 elnn1uz2 9541 mnflt 9715 mnfltpnf 9717 xrltso 9728 fzdcel 9971 fzm1 10031 qletric 10175 qlelttric 10176 qdceq 10178 qsqeqor 10561 nn0o1gt2 11838 prm23lt5 12191 bj-fadc 13595 decidin 13638 triap 13868 tridceq 13895 |
Copyright terms: Public domain | W3C validator |