| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > olc | GIF version | ||
| Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) | |
| 2 | jaob 712 | . . 3 ⊢ (((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) ↔ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑)))) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑))) |
| 4 | 3 | simpri 113 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: oibabs 716 pm1.4 729 olci 734 pm2.07 739 pm2.46 741 biorf 746 pm1.5 767 pm2.41 778 pm4.78i 784 pm3.48 787 ordi 818 andi 820 pm4.72 829 stdcn 849 pm2.54dc 893 pm2.85dc 907 dcor 938 dedlemb 973 xoranor 1397 19.33 1508 hbor 1570 nford 1591 19.30dc 1651 19.43 1652 19.32r 1704 euor2 2114 mooran2 2129 r19.32r 2654 undif3ss 3442 undif4 3531 issod 4384 onsucelsucexmid 4596 sucprcreg 4615 0elnn 4685 acexmidlemph 5960 nntri3or 6602 swoord1 6672 swoord2 6673 exmidaclem 7351 exmidontri2or 7389 addlocprlem 7683 nqprloc 7693 apreap 8695 zletric 9451 zlelttric 9452 zmulcl 9461 zdceq 9483 zdcle 9484 zdclt 9485 nn0lt2 9489 elnn1uz2 9763 mnflt 9940 mnfltpnf 9942 xrltso 9953 fzdcel 10197 fzm1 10257 qletric 10421 qlelttric 10422 qdceq 10424 qdclt 10425 qsqeqor 10832 zzlesq 10890 nn0o1gt2 12331 prm23lt5 12701 gausslemma2dlem0f 15646 umgrupgr 15823 umgrislfupgrenlem 15836 bj-fadc 15890 decidin 15933 triap 16170 tridceq 16197 |
| Copyright terms: Public domain | W3C validator |