| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > olc | GIF version | ||
| Description: Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| olc | ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) | |
| 2 | jaob 711 | . . 3 ⊢ (((𝜓 ∨ 𝜑) → (𝜓 ∨ 𝜑)) ↔ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑)))) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜓 → (𝜓 ∨ 𝜑)) ∧ (𝜑 → (𝜓 ∨ 𝜑))) | 
| 4 | 3 | simpri 113 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: oibabs 715 pm1.4 728 olci 733 pm2.07 738 pm2.46 740 biorf 745 pm1.5 766 pm2.41 777 pm4.78i 783 pm3.48 786 ordi 817 andi 819 pm4.72 828 stdcn 848 pm2.54dc 892 pm2.85dc 906 dcor 937 dedlemb 972 xoranor 1388 19.33 1498 hbor 1560 nford 1581 19.30dc 1641 19.43 1642 19.32r 1694 euor2 2103 mooran2 2118 r19.32r 2643 undif3ss 3424 undif4 3513 issod 4354 onsucelsucexmid 4566 sucprcreg 4585 0elnn 4655 acexmidlemph 5915 nntri3or 6551 swoord1 6621 swoord2 6622 exmidaclem 7275 exmidontri2or 7310 addlocprlem 7602 nqprloc 7612 apreap 8614 zletric 9370 zlelttric 9371 zmulcl 9379 zdceq 9401 zdcle 9402 zdclt 9403 nn0lt2 9407 elnn1uz2 9681 mnflt 9858 mnfltpnf 9860 xrltso 9871 fzdcel 10115 fzm1 10175 qletric 10331 qlelttric 10332 qdceq 10334 qdclt 10335 qsqeqor 10742 zzlesq 10800 nn0o1gt2 12070 prm23lt5 12432 gausslemma2dlem0f 15295 bj-fadc 15400 decidin 15443 triap 15673 tridceq 15700 | 
| Copyright terms: Public domain | W3C validator |