ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.53r GIF version

Theorem pm4.53r 840
Description: One direction of theorem *4.53 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
pm4.53r ((¬ 𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem pm4.53r
StepHypRef Expression
1 pm4.52im 839 . 2 ((𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))
21con2i 590 1 ((¬ 𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  undif3ss  3249
  Copyright terms: Public domain W3C validator