ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioran GIF version

Theorem ioran 753
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 782, anordc 958, or ianordc 900. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
ioran (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem ioran
StepHypRef Expression
1 pm2.45 739 . . 3 (¬ (𝜑𝜓) → ¬ 𝜑)
2 pm2.46 740 . . 3 (¬ (𝜑𝜓) → ¬ 𝜓)
31, 2jca 306 . 2 (¬ (𝜑𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))
4 simpl 109 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑)
54con2i 628 . . . 4 (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
6 simpr 110 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓)
76con2i 628 . . . 4 (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
85, 7jaoi 717 . . 3 ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
98con2i 628 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
103, 9impbii 126 1 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.56  781  nnexmid  851  dcor  937  3ioran  995  3ori  1312  unssdif  3407  difundi  3424  dcun  3569  sotricim  4369  sotritrieq  4371  en2lp  4601  poxp  6317  nntri2  6579  finexdc  6998  unfidisj  7018  fidcenumlemrks  7054  pw1nel3  7342  sucpw1nel3  7344  onntri45  7352  aptipr  7753  lttri3  8151  letr  8154  apirr  8677  apti  8694  elnnz  9381  xrlttri3  9918  xrletr  9929  exp3val  10684  bcval4  10895  hashunlem  10947  maxleast  11466  xrmaxlesup  11512  lcmval  12327  lcmcllem  12331  lcmgcdlem  12341  isprm3  12382  pcpremul  12558  ivthinc  15057  lgsdir2  15452  2lgslem3  15520  structiedg0val  15579  bj-nnor  15603  pwtrufal  15867  pwle2  15868
  Copyright terms: Public domain W3C validator