![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioran | GIF version |
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 782, anordc 958, or ianordc 900. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.45 739 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
2 | pm2.46 740 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) |
4 | simpl 109 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑) | |
5 | 4 | con2i 628 | . . . 4 ⊢ (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
6 | simpr 110 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓) | |
7 | 6 | con2i 628 | . . . 4 ⊢ (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
8 | 5, 7 | jaoi 717 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
9 | 8 | con2i 628 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
10 | 3, 9 | impbii 126 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.56 781 nnexmid 851 dcor 937 3ioran 995 3ori 1311 unssdif 3395 difundi 3412 dcun 3557 sotricim 4355 sotritrieq 4357 en2lp 4587 poxp 6287 nntri2 6549 finexdc 6960 unfidisj 6980 fidcenumlemrks 7014 pw1nel3 7293 sucpw1nel3 7295 onntri45 7303 aptipr 7703 lttri3 8101 letr 8104 apirr 8626 apti 8643 elnnz 9330 xrlttri3 9866 xrletr 9877 exp3val 10615 bcval4 10826 hashunlem 10878 maxleast 11360 xrmaxlesup 11405 lcmval 12204 lcmcllem 12208 lcmgcdlem 12218 isprm3 12259 pcpremul 12434 ivthinc 14822 lgsdir2 15190 2lgslem3 15258 bj-nnor 15296 pwtrufal 15558 pwle2 15559 |
Copyright terms: Public domain | W3C validator |