ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioran GIF version

Theorem ioran 752
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 781, anordc 956, or ianordc 899. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
ioran (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem ioran
StepHypRef Expression
1 pm2.45 738 . . 3 (¬ (𝜑𝜓) → ¬ 𝜑)
2 pm2.46 739 . . 3 (¬ (𝜑𝜓) → ¬ 𝜓)
31, 2jca 306 . 2 (¬ (𝜑𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))
4 simpl 109 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑)
54con2i 627 . . . 4 (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
6 simpr 110 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓)
76con2i 627 . . . 4 (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
85, 7jaoi 716 . . 3 ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
98con2i 627 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
103, 9impbii 126 1 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.56  780  nnexmid  850  dcor  935  3ioran  993  3ori  1300  unssdif  3371  difundi  3388  dcun  3534  sotricim  4324  sotritrieq  4326  en2lp  4554  poxp  6233  nntri2  6495  finexdc  6902  unfidisj  6921  fidcenumlemrks  6952  pw1nel3  7230  sucpw1nel3  7232  onntri45  7240  aptipr  7640  lttri3  8037  letr  8040  apirr  8562  apti  8579  elnnz  9263  xrlttri3  9797  xrletr  9808  exp3val  10522  bcval4  10732  hashunlem  10784  maxleast  11222  xrmaxlesup  11267  lcmval  12063  lcmcllem  12067  lcmgcdlem  12077  isprm3  12118  pcpremul  12293  ivthinc  14124  lgsdir2  14437  bj-nnor  14489  pwtrufal  14750  pwle2  14751
  Copyright terms: Public domain W3C validator