ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioran GIF version

Theorem ioran 753
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 782, anordc 958, or ianordc 900. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
ioran (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem ioran
StepHypRef Expression
1 pm2.45 739 . . 3 (¬ (𝜑𝜓) → ¬ 𝜑)
2 pm2.46 740 . . 3 (¬ (𝜑𝜓) → ¬ 𝜓)
31, 2jca 306 . 2 (¬ (𝜑𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))
4 simpl 109 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑)
54con2i 628 . . . 4 (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
6 simpr 110 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓)
76con2i 628 . . . 4 (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
85, 7jaoi 717 . . 3 ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
98con2i 628 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
103, 9impbii 126 1 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.56  781  nnexmid  851  dcor  937  3ioran  995  3ori  1311  unssdif  3399  difundi  3416  dcun  3561  sotricim  4359  sotritrieq  4361  en2lp  4591  poxp  6299  nntri2  6561  finexdc  6972  unfidisj  6992  fidcenumlemrks  7028  pw1nel3  7316  sucpw1nel3  7318  onntri45  7326  aptipr  7727  lttri3  8125  letr  8128  apirr  8651  apti  8668  elnnz  9355  xrlttri3  9891  xrletr  9902  exp3val  10652  bcval4  10863  hashunlem  10915  maxleast  11397  xrmaxlesup  11443  lcmval  12258  lcmcllem  12262  lcmgcdlem  12272  isprm3  12313  pcpremul  12489  ivthinc  14987  lgsdir2  15382  2lgslem3  15450  bj-nnor  15488  pwtrufal  15752  pwle2  15753
  Copyright terms: Public domain W3C validator