Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ioran | GIF version |
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 771, anordc 946, or ianordc 889. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.45 728 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
2 | pm2.46 729 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) |
4 | simpl 108 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑) | |
5 | 4 | con2i 617 | . . . 4 ⊢ (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
6 | simpr 109 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓) | |
7 | 6 | con2i 617 | . . . 4 ⊢ (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
8 | 5, 7 | jaoi 706 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
9 | 8 | con2i 617 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
10 | 3, 9 | impbii 125 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm4.56 770 nnexmid 840 dcor 925 3ioran 983 3ori 1290 unssdif 3356 difundi 3373 dcun 3518 sotricim 4300 sotritrieq 4302 en2lp 4530 poxp 6196 nntri2 6458 finexdc 6864 unfidisj 6883 fidcenumlemrks 6914 pw1nel3 7183 sucpw1nel3 7185 onntri45 7193 aptipr 7578 lttri3 7974 letr 7977 apirr 8499 apti 8516 elnnz 9197 xrlttri3 9729 xrletr 9740 exp3val 10453 bcval4 10661 hashunlem 10713 maxleast 11151 xrmaxlesup 11196 lcmval 11991 lcmcllem 11995 lcmgcdlem 12005 isprm3 12046 pcpremul 12221 ivthinc 13221 lgsdir2 13534 bj-nnor 13575 pwtrufal 13837 pwle2 13838 |
Copyright terms: Public domain | W3C validator |