| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioran | GIF version | ||
| Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 782, anordc 958, or ianordc 900. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.45 739 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
| 2 | pm2.46 740 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) |
| 4 | simpl 109 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑) | |
| 5 | 4 | con2i 628 | . . . 4 ⊢ (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 6 | simpr 110 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓) | |
| 7 | 6 | con2i 628 | . . . 4 ⊢ (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 8 | 5, 7 | jaoi 717 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 9 | 8 | con2i 628 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
| 10 | 3, 9 | impbii 126 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.56 781 nnexmid 851 dcor 937 3ioran 995 3ori 1312 unssdif 3407 difundi 3424 dcun 3569 sotricim 4368 sotritrieq 4370 en2lp 4600 poxp 6308 nntri2 6570 finexdc 6981 unfidisj 7001 fidcenumlemrks 7037 pw1nel3 7325 sucpw1nel3 7327 onntri45 7335 aptipr 7736 lttri3 8134 letr 8137 apirr 8660 apti 8677 elnnz 9364 xrlttri3 9901 xrletr 9912 exp3val 10667 bcval4 10878 hashunlem 10930 maxleast 11443 xrmaxlesup 11489 lcmval 12304 lcmcllem 12308 lcmgcdlem 12318 isprm3 12359 pcpremul 12535 ivthinc 15033 lgsdir2 15428 2lgslem3 15496 bj-nnor 15534 pwtrufal 15798 pwle2 15799 |
| Copyright terms: Public domain | W3C validator |