ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioran GIF version

Theorem ioran 753
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 782, anordc 958, or ianordc 900. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
ioran (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem ioran
StepHypRef Expression
1 pm2.45 739 . . 3 (¬ (𝜑𝜓) → ¬ 𝜑)
2 pm2.46 740 . . 3 (¬ (𝜑𝜓) → ¬ 𝜓)
31, 2jca 306 . 2 (¬ (𝜑𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))
4 simpl 109 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑)
54con2i 628 . . . 4 (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
6 simpr 110 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓)
76con2i 628 . . . 4 (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
85, 7jaoi 717 . . 3 ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
98con2i 628 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
103, 9impbii 126 1 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.56  781  nnexmid  851  dcor  937  3ioran  995  3ori  1311  unssdif  3398  difundi  3415  dcun  3560  sotricim  4358  sotritrieq  4360  en2lp  4590  poxp  6290  nntri2  6552  finexdc  6963  unfidisj  6983  fidcenumlemrks  7019  pw1nel3  7298  sucpw1nel3  7300  onntri45  7308  aptipr  7708  lttri3  8106  letr  8109  apirr  8632  apti  8649  elnnz  9336  xrlttri3  9872  xrletr  9883  exp3val  10633  bcval4  10844  hashunlem  10896  maxleast  11378  xrmaxlesup  11424  lcmval  12231  lcmcllem  12235  lcmgcdlem  12245  isprm3  12286  pcpremul  12462  ivthinc  14879  lgsdir2  15274  2lgslem3  15342  bj-nnor  15380  pwtrufal  15642  pwle2  15643
  Copyright terms: Public domain W3C validator