| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioran | GIF version | ||
| Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 786, anordc 962, or ianordc 904. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.45 743 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
| 2 | pm2.46 744 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) |
| 4 | simpl 109 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑) | |
| 5 | 4 | con2i 630 | . . . 4 ⊢ (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 6 | simpr 110 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓) | |
| 7 | 6 | con2i 630 | . . . 4 ⊢ (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 8 | 5, 7 | jaoi 721 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 9 | 8 | con2i 630 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
| 10 | 3, 9 | impbii 126 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.56 785 nnexmid 855 dcor 941 3ioran 1017 3ori 1334 ecase2d 1385 unssdif 3439 difundi 3456 dcun 3601 sotricim 4413 sotritrieq 4415 en2lp 4645 poxp 6376 nntri2 6638 finexdc 7060 unfidisj 7080 fidcenumlemrks 7116 pw1nel3 7412 sucpw1nel3 7414 onntri45 7422 aptipr 7824 lttri3 8222 letr 8225 apirr 8748 apti 8765 elnnz 9452 xrlttri3 9989 xrletr 10000 exp3val 10758 bcval4 10969 hashunlem 11021 maxleast 11719 xrmaxlesup 11765 lcmval 12580 lcmcllem 12584 lcmgcdlem 12594 isprm3 12635 pcpremul 12811 ivthinc 15311 lgsdir2 15706 2lgslem3 15774 structiedg0val 15835 bj-nnor 16056 pwtrufal 16322 pwle2 16323 |
| Copyright terms: Public domain | W3C validator |