| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioran | GIF version | ||
| Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 783, anordc 959, or ianordc 901. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.45 740 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
| 2 | pm2.46 741 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) |
| 4 | simpl 109 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑) | |
| 5 | 4 | con2i 628 | . . . 4 ⊢ (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 6 | simpr 110 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓) | |
| 7 | 6 | con2i 628 | . . . 4 ⊢ (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 8 | 5, 7 | jaoi 718 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 9 | 8 | con2i 628 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
| 10 | 3, 9 | impbii 126 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.56 782 nnexmid 852 dcor 938 3ioran 996 3ori 1313 unssdif 3412 difundi 3429 dcun 3574 sotricim 4378 sotritrieq 4380 en2lp 4610 poxp 6331 nntri2 6593 finexdc 7014 unfidisj 7034 fidcenumlemrks 7070 pw1nel3 7362 sucpw1nel3 7364 onntri45 7372 aptipr 7774 lttri3 8172 letr 8175 apirr 8698 apti 8715 elnnz 9402 xrlttri3 9939 xrletr 9950 exp3val 10708 bcval4 10919 hashunlem 10971 maxleast 11599 xrmaxlesup 11645 lcmval 12460 lcmcllem 12464 lcmgcdlem 12474 isprm3 12515 pcpremul 12691 ivthinc 15190 lgsdir2 15585 2lgslem3 15653 structiedg0val 15714 bj-nnor 15809 pwtrufal 16075 pwle2 16076 |
| Copyright terms: Public domain | W3C validator |