ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioran GIF version

Theorem ioran 753
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 782, anordc 958, or ianordc 900. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
ioran (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem ioran
StepHypRef Expression
1 pm2.45 739 . . 3 (¬ (𝜑𝜓) → ¬ 𝜑)
2 pm2.46 740 . . 3 (¬ (𝜑𝜓) → ¬ 𝜓)
31, 2jca 306 . 2 (¬ (𝜑𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))
4 simpl 109 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑)
54con2i 628 . . . 4 (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
6 simpr 110 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓)
76con2i 628 . . . 4 (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
85, 7jaoi 717 . . 3 ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
98con2i 628 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
103, 9impbii 126 1 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.56  781  nnexmid  851  dcor  937  3ioran  995  3ori  1311  unssdif  3399  difundi  3416  dcun  3561  sotricim  4359  sotritrieq  4361  en2lp  4591  poxp  6299  nntri2  6561  finexdc  6972  unfidisj  6992  fidcenumlemrks  7028  pw1nel3  7314  sucpw1nel3  7316  onntri45  7324  aptipr  7725  lttri3  8123  letr  8126  apirr  8649  apti  8666  elnnz  9353  xrlttri3  9889  xrletr  9900  exp3val  10650  bcval4  10861  hashunlem  10913  maxleast  11395  xrmaxlesup  11441  lcmval  12256  lcmcllem  12260  lcmgcdlem  12270  isprm3  12311  pcpremul  12487  ivthinc  14963  lgsdir2  15358  2lgslem3  15426  bj-nnor  15464  pwtrufal  15728  pwle2  15729
  Copyright terms: Public domain W3C validator