| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioran | GIF version | ||
| Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 782, anordc 958, or ianordc 900. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.45 739 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
| 2 | pm2.46 740 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) |
| 4 | simpl 109 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑) | |
| 5 | 4 | con2i 628 | . . . 4 ⊢ (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 6 | simpr 110 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓) | |
| 7 | 6 | con2i 628 | . . . 4 ⊢ (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 8 | 5, 7 | jaoi 717 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
| 9 | 8 | con2i 628 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
| 10 | 3, 9 | impbii 126 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.56 781 nnexmid 851 dcor 937 3ioran 995 3ori 1312 unssdif 3407 difundi 3424 dcun 3569 sotricim 4369 sotritrieq 4371 en2lp 4601 poxp 6317 nntri2 6579 finexdc 6998 unfidisj 7018 fidcenumlemrks 7054 pw1nel3 7342 sucpw1nel3 7344 onntri45 7352 aptipr 7753 lttri3 8151 letr 8154 apirr 8677 apti 8694 elnnz 9381 xrlttri3 9918 xrletr 9929 exp3val 10684 bcval4 10895 hashunlem 10947 maxleast 11466 xrmaxlesup 11512 lcmval 12327 lcmcllem 12331 lcmgcdlem 12341 isprm3 12382 pcpremul 12558 ivthinc 15057 lgsdir2 15452 2lgslem3 15520 structiedg0val 15579 bj-nnor 15603 pwtrufal 15867 pwle2 15868 |
| Copyright terms: Public domain | W3C validator |