![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioran | GIF version |
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 841, anordc 898, or ianordc 833. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.45 690 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
2 | pm2.46 691 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | |
3 | 1, 2 | jca 300 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) |
4 | simpl 107 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑) | |
5 | 4 | con2i 590 | . . . 4 ⊢ (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
6 | simpr 108 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓) | |
7 | 6 | con2i 590 | . . . 4 ⊢ (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
8 | 5, 7 | jaoi 669 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
9 | 8 | con2i 590 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
10 | 3, 9 | impbii 124 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 ↔ wb 103 ∨ wo 662 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm4.56 840 dcor 877 3ioran 935 3ori 1232 unssdif 3217 difundi 3234 sotricim 4113 sotritrieq 4115 en2lp 4332 poxp 5930 nntri2 6185 finexdc 6543 unfidisj 6557 aptipr 7101 lttri3 7466 letr 7469 apirr 7980 apti 7997 elnnz 8654 xrlttri3 9160 xrletr 9166 expival 9792 bcval4 9993 hashunlem 10045 maxleast 10471 lcmval 10823 lcmcllem 10827 lcmgcdlem 10837 isprm3 10878 nnexmid 11001 |
Copyright terms: Public domain | W3C validator |