![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioran | GIF version |
Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 781, anordc 956, or ianordc 899. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ioran | ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.45 738 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | |
2 | pm2.46 739 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) |
4 | simpl 109 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜑) | |
5 | 4 | con2i 627 | . . . 4 ⊢ (𝜑 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
6 | simpr 110 | . . . . 5 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ 𝜓) | |
7 | 6 | con2i 627 | . . . 4 ⊢ (𝜓 → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
8 | 5, 7 | jaoi 716 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
9 | 8 | con2i 627 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
10 | 3, 9 | impbii 126 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.56 780 nnexmid 850 dcor 935 3ioran 993 3ori 1300 unssdif 3371 difundi 3388 dcun 3534 sotricim 4324 sotritrieq 4326 en2lp 4554 poxp 6233 nntri2 6495 finexdc 6902 unfidisj 6921 fidcenumlemrks 6952 pw1nel3 7230 sucpw1nel3 7232 onntri45 7240 aptipr 7640 lttri3 8037 letr 8040 apirr 8562 apti 8579 elnnz 9263 xrlttri3 9797 xrletr 9808 exp3val 10522 bcval4 10732 hashunlem 10784 maxleast 11222 xrmaxlesup 11267 lcmval 12063 lcmcllem 12067 lcmgcdlem 12077 isprm3 12118 pcpremul 12293 ivthinc 14124 lgsdir2 14437 bj-nnor 14489 pwtrufal 14750 pwle2 14751 |
Copyright terms: Public domain | W3C validator |