ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.78i GIF version

Theorem pm4.78i 777
Description: Implication distributes over disjunction. One direction of Theorem *4.78 of [WhiteheadRussell] p. 121. The converse holds in classical logic. (Contributed by Jim Kingdon, 15-Jan-2018.)
Assertion
Ref Expression
pm4.78i (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm4.78i
StepHypRef Expression
1 orc 707 . . 3 (𝜓 → (𝜓𝜒))
21imim2i 12 . 2 ((𝜑𝜓) → (𝜑 → (𝜓𝜒)))
3 olc 706 . . 3 (𝜒 → (𝜓𝜒))
43imim2i 12 . 2 ((𝜑𝜒) → (𝜑 → (𝜓𝜒)))
52, 4jaoi 711 1 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator