Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oranim | GIF version |
Description: Disjunction in terms of conjunction (DeMorgan's law). One direction of Theorem *4.57 of [WhiteheadRussell] p. 120. The converse does not hold intuitionistically but does hold in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.) |
Ref | Expression |
---|---|
oranim | ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.56 775 | . . 3 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
2 | 1 | biimpi 119 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) |
3 | 2 | con2i 622 | 1 ⊢ ((𝜑 ∨ 𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: unssin 3366 prneimg 3759 ftpg 5677 xrlttri3 9741 |
Copyright terms: Public domain | W3C validator |