ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oranim GIF version

Theorem oranim 786
Description: Disjunction in terms of conjunction (DeMorgan's law). One direction of Theorem *4.57 of [WhiteheadRussell] p. 120. The converse does not hold intuitionistically but does hold in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
oranim ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem oranim
StepHypRef Expression
1 pm4.56 785 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21biimpi 120 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
32con2i 630 1 ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  unssin  3443  prneimg  3851  ftpg  5816  xrlttri3  9981
  Copyright terms: Public domain W3C validator