ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oranim GIF version

Theorem oranim 771
Description: Disjunction in terms of conjunction (DeMorgan's law). One direction of Theorem *4.57 of [WhiteheadRussell] p. 120. The converse does not hold intuitionistically but does hold in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
oranim ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem oranim
StepHypRef Expression
1 pm4.56 770 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21biimpi 119 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
32con2i 617 1 ((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  unssin  3361  prneimg  3754  ftpg  5669  xrlttri3  9733
  Copyright terms: Public domain W3C validator