| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.18im | GIF version | ||
| Description: One direction of pm5.18dc 884, which holds for all propositions, not just decidable propositions. (Contributed by Jim Kingdon, 10-Mar-2018.) |
| Ref | Expression |
|---|---|
| pm5.18im | ⊢ ((𝜑 ↔ 𝜓) → ¬ (𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.19 707 | . 2 ⊢ ¬ (𝜓 ↔ ¬ 𝜓) | |
| 2 | bibi1 240 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜓))) | |
| 3 | 2 | notbid 668 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ (𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜓 ↔ ¬ 𝜓))) |
| 4 | 1, 3 | mpbiri 168 | 1 ⊢ ((𝜑 ↔ 𝜓) → ¬ (𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xornbi 1397 |
| Copyright terms: Public domain | W3C validator |