Proof of Theorem pm5.18dc
Step | Hyp | Ref
| Expression |
1 | | df-dc 830 |
. 2
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) |
2 | | pm5.501 243 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓))) |
3 | 2 | a1d 22 |
. . . . . . 7
⊢ (𝜑 → (DECID
𝜓 → (¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓)))) |
4 | 3 | con1biddc 871 |
. . . . . 6
⊢ (𝜑 → (DECID
𝜓 → (¬ (𝜑 ↔ ¬ 𝜓) ↔ 𝜓))) |
5 | 4 | imp 123 |
. . . . 5
⊢ ((𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ ¬ 𝜓) ↔ 𝜓)) |
6 | | pm5.501 243 |
. . . . . 6
⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) |
7 | 6 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ DECID 𝜓) → (𝜓 ↔ (𝜑 ↔ 𝜓))) |
8 | 5, 7 | bitr2d 188 |
. . . 4
⊢ ((𝜑 ∧ DECID 𝜓) → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))) |
9 | 8 | ex 114 |
. . 3
⊢ (𝜑 → (DECID
𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))) |
10 | | dcn 837 |
. . . . . . 7
⊢
(DECID 𝜓 → DECID ¬ 𝜓) |
11 | | nbn2 692 |
. . . . . . . . 9
⊢ (¬
𝜑 → (¬ ¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓))) |
12 | 11 | a1d 22 |
. . . . . . . 8
⊢ (¬
𝜑 →
(DECID ¬ 𝜓
→ (¬ ¬ 𝜓 ↔
(𝜑 ↔ ¬ 𝜓)))) |
13 | 12 | con1biddc 871 |
. . . . . . 7
⊢ (¬
𝜑 →
(DECID ¬ 𝜓
→ (¬ (𝜑 ↔ ¬
𝜓) ↔ ¬ 𝜓))) |
14 | 10, 13 | syl5 32 |
. . . . . 6
⊢ (¬
𝜑 →
(DECID 𝜓
→ (¬ (𝜑 ↔ ¬
𝜓) ↔ ¬ 𝜓))) |
15 | 14 | imp 123 |
. . . . 5
⊢ ((¬
𝜑 ∧ DECID
𝜓) → (¬ (𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜓)) |
16 | | nbn2 692 |
. . . . . 6
⊢ (¬
𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) |
17 | 16 | adantr 274 |
. . . . 5
⊢ ((¬
𝜑 ∧ DECID
𝜓) → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) |
18 | 15, 17 | bitr2d 188 |
. . . 4
⊢ ((¬
𝜑 ∧ DECID
𝜓) → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))) |
19 | 18 | ex 114 |
. . 3
⊢ (¬
𝜑 →
(DECID 𝜓
→ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))) |
20 | 9, 19 | jaoi 711 |
. 2
⊢ ((𝜑 ∨ ¬ 𝜑) → (DECID 𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))) |
21 | 1, 20 | sylbi 120 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))) |