![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbiri | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbiri.min | ⊢ 𝜒 |
mpbiri.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbiri | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiri.min | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpbiri.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.18im 1385 dedhb 2906 sbceqal 3018 ssdifeq0 3505 pwidg 3589 elpr2 3614 snidg 3621 exsnrex 3634 rabrsndc 3660 prid1g 3696 tpid1g 3704 tpid2g 3706 sssnr 3753 ssprr 3756 sstpr 3757 preqr1 3768 unimax 3843 intmin3 3871 eqbrtrdi 4042 pwnss 4159 0inp0 4166 bnd2 4173 ss1o0el1 4197 exmidsssn 4202 exmidundif 4206 exmidundifim 4207 euabex 4225 copsexg 4244 euotd 4254 elopab 4258 epelg 4290 sucidg 4416 ifelpwung 4481 regexmidlem1 4532 sucprcreg 4548 onprc 4551 dtruex 4558 omelon2 4607 elvvuni 4690 eqrelriv 4719 relopabi 4752 opabid2 4758 ididg 4780 iss 4953 funopg 5250 fn0 5335 f00 5407 f0bi 5408 f1o00 5496 fo00 5497 brprcneu 5508 relelfvdm 5547 fsn 5688 eufnfv 5747 f1eqcocnv 5791 riotaprop 5853 acexmidlemb 5866 acexmidlemab 5868 acexmidlem2 5871 oprabid 5906 elrnmpo 5987 ov6g 6011 eqop2 6178 1stconst 6221 2ndconst 6222 dftpos3 6262 dftpos4 6263 2pwuninelg 6283 frecabcl 6399 el2oss1o 6443 ecopover 6632 map0g 6687 mapsn 6689 elixpsn 6734 en0 6794 en1 6798 fiprc 6814 dom0 6837 nneneq 6856 findcard 6887 findcard2 6888 findcard2s 6889 sbthlem2 6956 sbthlemi4 6958 sbthlemi5 6959 eldju2ndl 7070 updjudhf 7077 enumct 7113 nnnninf 7123 nninfisollem0 7127 fodjuomnilemdc 7141 exmidonfinlem 7191 exmidaclem 7206 pw1ne1 7227 pw1ne3 7228 1ne0sr 7764 00sr 7767 cnm 7830 eqlei2 8051 cnstab 8601 divcanap3 8654 sup3exmid 8913 nn1suc 8937 nn0ge0 9200 xnn0xr 9243 xnn0nemnf 9249 elnn0z 9265 nn0n0n1ge2b 9331 nn0ind-raph 9369 elnn1uz2 9606 indstr2 9608 xrnemnf 9776 xrnepnf 9777 mnfltxr 9785 nn0pnfge0 9790 xrlttr 9794 xrltso 9795 xrlttri3 9796 nltpnft 9813 npnflt 9814 ngtmnft 9816 nmnfgt 9817 xsubge0 9880 xposdif 9881 xleaddadd 9886 fztpval 10082 fseq1p1m1 10093 fz01or 10110 qbtwnxr 10257 fzfig 10429 uzsinds 10441 ser0f 10514 1exp 10548 0exp 10554 bcn1 10737 zfz1iso 10820 sqrt0rlem 11011 prodf1f 11550 0dvds 11817 nn0o 11911 flodddiv4 11938 gcddvds 11963 bezoutlemmain 11998 lcmdvds 12078 rpdvds 12098 1nprm 12113 prmind2 12119 nnoddn2prmb 12261 pcpre1 12291 qexpz 12349 ennnfonelemj0 12401 ennnfonelemhf1o 12413 strslfv 12506 restsspw 12697 xpsfrnel 12762 mgmidcl 12796 mgmlrid 12797 releqgg 13078 baspartn 13520 eltg3 13527 topnex 13556 discld 13606 lmreltop 13663 cnpfval 13665 cnprcl2k 13676 idcn 13682 xmet0 13833 blfvalps 13855 blfps 13879 blf 13880 limcimolemlt 14103 recnprss 14126 lgsdir2lem2 14400 2sqlem7 14438 funmptd 14525 bj-om 14659 bj-nn0suc0 14672 bj-nn0suc 14686 bj-nn0sucALT 14700 bj-findis 14701 nninfall 14728 trilpolemcl 14755 dceqnconst 14777 dcapnconst 14778 |
Copyright terms: Public domain | W3C validator |