Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbiri | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbiri.min | ⊢ 𝜒 |
mpbiri.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbiri | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiri.min | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpbiri.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbird 166 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.18im 1380 dedhb 2899 sbceqal 3010 ssdifeq0 3497 pwidg 3580 elpr2 3605 snidg 3612 exsnrex 3625 rabrsndc 3651 prid1g 3687 tpid1g 3695 tpid2g 3697 sssnr 3740 ssprr 3743 sstpr 3744 preqr1 3755 unimax 3830 intmin3 3858 eqbrtrdi 4028 pwnss 4145 0inp0 4152 bnd2 4159 ss1o0el1 4183 exmidsssn 4188 exmidundif 4192 exmidundifim 4193 euabex 4210 copsexg 4229 euotd 4239 elopab 4243 epelg 4275 sucidg 4401 ifelpwung 4466 regexmidlem1 4517 sucprcreg 4533 onprc 4536 dtruex 4543 omelon2 4592 elvvuni 4675 eqrelriv 4704 relopabi 4737 opabid2 4742 ididg 4764 iss 4937 funopg 5232 fn0 5317 f00 5389 f0bi 5390 f1o00 5477 fo00 5478 brprcneu 5489 relelfvdm 5528 fsn 5668 eufnfv 5726 f1eqcocnv 5770 riotaprop 5832 acexmidlemb 5845 acexmidlemab 5847 acexmidlem2 5850 oprabid 5885 elrnmpo 5966 ov6g 5990 eqop2 6157 1stconst 6200 2ndconst 6201 dftpos3 6241 dftpos4 6242 2pwuninelg 6262 frecabcl 6378 el2oss1o 6422 ecopover 6611 map0g 6666 mapsn 6668 elixpsn 6713 en0 6773 en1 6777 fiprc 6793 dom0 6816 nneneq 6835 findcard 6866 findcard2 6867 findcard2s 6868 sbthlem2 6935 sbthlemi4 6937 sbthlemi5 6938 eldju2ndl 7049 updjudhf 7056 enumct 7092 nnnninf 7102 nninfisollem0 7106 fodjuomnilemdc 7120 exmidonfinlem 7170 exmidaclem 7185 pw1ne1 7206 pw1ne3 7207 1ne0sr 7728 00sr 7731 cnm 7794 eqlei2 8014 cnstab 8564 divcanap3 8615 sup3exmid 8873 nn1suc 8897 nn0ge0 9160 xnn0xr 9203 xnn0nemnf 9209 elnn0z 9225 nn0n0n1ge2b 9291 nn0ind-raph 9329 elnn1uz2 9566 indstr2 9568 xrnemnf 9734 xrnepnf 9735 mnfltxr 9743 nn0pnfge0 9748 xrlttr 9752 xrltso 9753 xrlttri3 9754 nltpnft 9771 npnflt 9772 ngtmnft 9774 nmnfgt 9775 xsubge0 9838 xposdif 9839 xleaddadd 9844 fztpval 10039 fseq1p1m1 10050 fz01or 10067 qbtwnxr 10214 fzfig 10386 uzsinds 10398 ser0f 10471 1exp 10505 0exp 10511 bcn1 10692 zfz1iso 10776 sqrt0rlem 10967 prodf1f 11506 0dvds 11773 nn0o 11866 flodddiv4 11893 gcddvds 11918 bezoutlemmain 11953 lcmdvds 12033 rpdvds 12053 1nprm 12068 prmind2 12074 nnoddn2prmb 12216 pcpre1 12246 qexpz 12304 ennnfonelemj0 12356 ennnfonelemhf1o 12368 strslfv 12460 restsspw 12589 mgmidcl 12632 mgmlrid 12633 baspartn 12842 eltg3 12851 topnex 12880 discld 12930 lmreltop 12987 cnpfval 12989 cnprcl2k 13000 idcn 13006 xmet0 13157 blfvalps 13179 blfps 13203 blf 13204 limcimolemlt 13427 recnprss 13450 lgsdir2lem2 13724 2sqlem7 13751 funmptd 13838 bj-om 13972 bj-nn0suc0 13985 bj-nn0suc 13999 bj-nn0sucALT 14013 bj-findis 14014 nninfall 14042 trilpolemcl 14069 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |