Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbiri | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbiri.min | ⊢ 𝜒 |
mpbiri.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbiri | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiri.min | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpbiri.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbird 166 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.18im 1375 dedhb 2895 sbceqal 3006 ssdifeq0 3491 pwidg 3573 elpr2 3598 snidg 3605 exsnrex 3618 rabrsndc 3644 prid1g 3680 tpid1g 3688 tpid2g 3690 sssnr 3733 ssprr 3736 sstpr 3737 preqr1 3748 unimax 3823 intmin3 3851 eqbrtrdi 4021 pwnss 4138 0inp0 4145 bnd2 4152 ss1o0el1 4176 exmidsssn 4181 exmidundif 4185 exmidundifim 4186 euabex 4203 copsexg 4222 euotd 4232 elopab 4236 epelg 4268 sucidg 4394 ifelpwung 4459 regexmidlem1 4510 sucprcreg 4526 onprc 4529 dtruex 4536 omelon2 4585 elvvuni 4668 eqrelriv 4697 relopabi 4730 opabid2 4735 ididg 4757 iss 4930 funopg 5222 fn0 5307 f00 5379 f0bi 5380 f1o00 5467 fo00 5468 brprcneu 5479 relelfvdm 5518 fsn 5657 eufnfv 5715 f1eqcocnv 5759 riotaprop 5821 acexmidlemb 5834 acexmidlemab 5836 acexmidlem2 5839 oprabid 5874 elrnmpo 5955 ov6g 5979 eqop2 6146 1stconst 6189 2ndconst 6190 dftpos3 6230 dftpos4 6231 2pwuninelg 6251 frecabcl 6367 el2oss1o 6411 ecopover 6599 map0g 6654 mapsn 6656 elixpsn 6701 en0 6761 en1 6765 fiprc 6781 dom0 6804 nneneq 6823 findcard 6854 findcard2 6855 findcard2s 6856 sbthlem2 6923 sbthlemi4 6925 sbthlemi5 6926 eldju2ndl 7037 updjudhf 7044 enumct 7080 nnnninf 7090 nninfisollem0 7094 fodjuomnilemdc 7108 exmidonfinlem 7149 exmidaclem 7164 pw1ne1 7185 pw1ne3 7186 1ne0sr 7707 00sr 7710 cnm 7773 eqlei2 7993 cnstab 8543 divcanap3 8594 sup3exmid 8852 nn1suc 8876 nn0ge0 9139 xnn0xr 9182 xnn0nemnf 9188 elnn0z 9204 nn0n0n1ge2b 9270 nn0ind-raph 9308 elnn1uz2 9545 indstr2 9547 xrnemnf 9713 xrnepnf 9714 mnfltxr 9722 nn0pnfge0 9727 xrlttr 9731 xrltso 9732 xrlttri3 9733 nltpnft 9750 npnflt 9751 ngtmnft 9753 nmnfgt 9754 xsubge0 9817 xposdif 9818 xleaddadd 9823 fztpval 10018 fseq1p1m1 10029 fz01or 10046 qbtwnxr 10193 fzfig 10365 uzsinds 10377 ser0f 10450 1exp 10484 0exp 10490 bcn1 10671 zfz1iso 10754 sqrt0rlem 10945 prodf1f 11484 0dvds 11751 nn0o 11844 flodddiv4 11871 gcddvds 11896 bezoutlemmain 11931 lcmdvds 12011 rpdvds 12031 1nprm 12046 prmind2 12052 nnoddn2prmb 12194 pcpre1 12224 qexpz 12282 ennnfonelemj0 12334 ennnfonelemhf1o 12346 strslfv 12438 restsspw 12566 mgmidcl 12609 mgmlrid 12610 baspartn 12698 eltg3 12707 topnex 12736 discld 12786 lmreltop 12843 cnpfval 12845 cnprcl2k 12856 idcn 12862 xmet0 13013 blfvalps 13035 blfps 13059 blf 13060 limcimolemlt 13283 recnprss 13306 lgsdir2lem2 13580 2sqlem7 13607 funmptd 13695 bj-om 13829 bj-nn0suc0 13842 bj-nn0suc 13856 bj-nn0sucALT 13870 bj-findis 13871 nninfall 13899 trilpolemcl 13926 dceqnconst 13948 dcapnconst 13949 |
Copyright terms: Public domain | W3C validator |