Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbiri | GIF version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbiri.min | ⊢ 𝜒 |
mpbiri.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbiri | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiri.min | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | mpbiri.maj | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.18im 1385 dedhb 2904 sbceqal 3016 ssdifeq0 3503 pwidg 3586 elpr2 3611 snidg 3618 exsnrex 3631 rabrsndc 3657 prid1g 3693 tpid1g 3701 tpid2g 3703 sssnr 3749 ssprr 3752 sstpr 3753 preqr1 3764 unimax 3839 intmin3 3867 eqbrtrdi 4037 pwnss 4154 0inp0 4161 bnd2 4168 ss1o0el1 4192 exmidsssn 4197 exmidundif 4201 exmidundifim 4202 euabex 4219 copsexg 4238 euotd 4248 elopab 4252 epelg 4284 sucidg 4410 ifelpwung 4475 regexmidlem1 4526 sucprcreg 4542 onprc 4545 dtruex 4552 omelon2 4601 elvvuni 4684 eqrelriv 4713 relopabi 4746 opabid2 4751 ididg 4773 iss 4946 funopg 5242 fn0 5327 f00 5399 f0bi 5400 f1o00 5488 fo00 5489 brprcneu 5500 relelfvdm 5539 fsn 5680 eufnfv 5738 f1eqcocnv 5782 riotaprop 5844 acexmidlemb 5857 acexmidlemab 5859 acexmidlem2 5862 oprabid 5897 elrnmpo 5978 ov6g 6002 eqop2 6169 1stconst 6212 2ndconst 6213 dftpos3 6253 dftpos4 6254 2pwuninelg 6274 frecabcl 6390 el2oss1o 6434 ecopover 6623 map0g 6678 mapsn 6680 elixpsn 6725 en0 6785 en1 6789 fiprc 6805 dom0 6828 nneneq 6847 findcard 6878 findcard2 6879 findcard2s 6880 sbthlem2 6947 sbthlemi4 6949 sbthlemi5 6950 eldju2ndl 7061 updjudhf 7068 enumct 7104 nnnninf 7114 nninfisollem0 7118 fodjuomnilemdc 7132 exmidonfinlem 7182 exmidaclem 7197 pw1ne1 7218 pw1ne3 7219 1ne0sr 7740 00sr 7743 cnm 7806 eqlei2 8026 cnstab 8576 divcanap3 8627 sup3exmid 8885 nn1suc 8909 nn0ge0 9172 xnn0xr 9215 xnn0nemnf 9221 elnn0z 9237 nn0n0n1ge2b 9303 nn0ind-raph 9341 elnn1uz2 9578 indstr2 9580 xrnemnf 9746 xrnepnf 9747 mnfltxr 9755 nn0pnfge0 9760 xrlttr 9764 xrltso 9765 xrlttri3 9766 nltpnft 9783 npnflt 9784 ngtmnft 9786 nmnfgt 9787 xsubge0 9850 xposdif 9851 xleaddadd 9856 fztpval 10051 fseq1p1m1 10062 fz01or 10079 qbtwnxr 10226 fzfig 10398 uzsinds 10410 ser0f 10483 1exp 10517 0exp 10523 bcn1 10704 zfz1iso 10787 sqrt0rlem 10978 prodf1f 11517 0dvds 11784 nn0o 11877 flodddiv4 11904 gcddvds 11929 bezoutlemmain 11964 lcmdvds 12044 rpdvds 12064 1nprm 12079 prmind2 12085 nnoddn2prmb 12227 pcpre1 12257 qexpz 12315 ennnfonelemj0 12367 ennnfonelemhf1o 12379 strslfv 12471 restsspw 12618 mgmidcl 12661 mgmlrid 12662 baspartn 13099 eltg3 13108 topnex 13137 discld 13187 lmreltop 13244 cnpfval 13246 cnprcl2k 13257 idcn 13263 xmet0 13414 blfvalps 13436 blfps 13460 blf 13461 limcimolemlt 13684 recnprss 13707 lgsdir2lem2 13981 2sqlem7 14008 funmptd 14095 bj-om 14229 bj-nn0suc0 14242 bj-nn0suc 14256 bj-nn0sucALT 14270 bj-findis 14271 nninfall 14299 trilpolemcl 14326 dceqnconst 14348 dcapnconst 14349 |
Copyright terms: Public domain | W3C validator |