ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.6r GIF version

Theorem pm5.6r 922
Description: Conjunction in antecedent versus disjunction in consequent. One direction of Theorem *5.6 of [WhiteheadRussell] p. 125. If 𝜓 is decidable, the converse also holds (see pm5.6dc 921). (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
pm5.6r ((𝜑 → (𝜓𝜒)) → ((𝜑 ∧ ¬ 𝜓) → 𝜒))

Proof of Theorem pm5.6r
StepHypRef Expression
1 pm2.53 717 . . 3 ((𝜓𝜒) → (¬ 𝜓𝜒))
21imim2i 12 . 2 ((𝜑 → (𝜓𝜒)) → (𝜑 → (¬ 𝜓𝜒)))
32impd 252 1 ((𝜑 → (𝜓𝜒)) → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ssundifim  3498
  Copyright terms: Public domain W3C validator