ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssundifim GIF version

Theorem ssundifim 3506
Description: A consequence of inclusion in the union of two classes. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
ssundifim (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssundifim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm5.6r 927 . . . 4 ((𝑥𝐴 → (𝑥𝐵𝑥𝐶)) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
2 elun 3276 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32imbi2i 226 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
4 eldif 3138 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
54imbi1i 238 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
61, 3, 53imtr4i 201 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) → (𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
76alimi 1455 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) → ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
8 dfss2 3144 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
9 dfss2 3144 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
107, 8, 93imtr4i 201 1 (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  wal 1351  wcel 2148  cdif 3126  cun 3127  wss 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator