Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssundifim | GIF version |
Description: A consequence of inclusion in the union of two classes. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
ssundifim | ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.6r 917 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶)) | |
2 | elun 3263 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
3 | 2 | imbi2i 225 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
4 | eldif 3125 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
5 | 4 | imbi1i 237 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶)) |
6 | 1, 3, 5 | 3imtr4i 200 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) → (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) |
7 | 6 | alimi 1443 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) → ∀𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) |
8 | dfss2 3131 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶))) | |
9 | dfss2 3131 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) | |
10 | 7, 8, 9 | 3imtr4i 200 | 1 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 ∀wal 1341 ∈ wcel 2136 ∖ cdif 3113 ∪ cun 3114 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |