ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssundifim GIF version

Theorem ssundifim 3393
Description: A consequence of inclusion in the union of two classes. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
ssundifim (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssundifim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm5.6r 880 . . . 4 ((𝑥𝐴 → (𝑥𝐵𝑥𝐶)) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
2 elun 3164 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32imbi2i 225 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
4 eldif 3030 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
54imbi1i 237 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
61, 3, 53imtr4i 200 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) → (𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
76alimi 1399 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) → ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
8 dfss2 3036 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
9 dfss2 3036 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
107, 8, 93imtr4i 200 1 (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 670  wal 1297  wcel 1448  cdif 3018  cun 3019  wss 3021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator