Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.7dc | GIF version |
Description: Disjunction distributes over the biconditional, for a decidable proposition. Based on theorem *5.7 of [WhiteheadRussell] p. 125. This theorem is similar to orbididc 943. (Contributed by Jim Kingdon, 2-Apr-2018.) |
Ref | Expression |
---|---|
pm5.7dc | ⊢ (DECID 𝜒 → (((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) ↔ (𝜒 ∨ (𝜑 ↔ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbididc 943 | . 2 ⊢ (DECID 𝜒 → ((𝜒 ∨ (𝜑 ↔ 𝜓)) ↔ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)))) | |
2 | orcom 718 | . . 3 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜑 ∨ 𝜒)) | |
3 | orcom 718 | . . 3 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
4 | 2, 3 | bibi12i 228 | . 2 ⊢ (((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) ↔ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒))) |
5 | 1, 4 | bitr2di 196 | 1 ⊢ (DECID 𝜒 → (((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) ↔ (𝜒 ∨ (𝜑 ↔ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |