ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.7dc GIF version

Theorem pm5.7dc 949
Description: Disjunction distributes over the biconditional, for a decidable proposition. Based on theorem *5.7 of [WhiteheadRussell] p. 125. This theorem is similar to orbididc 948. (Contributed by Jim Kingdon, 2-Apr-2018.)
Assertion
Ref Expression
pm5.7dc (DECID 𝜒 → (((𝜑𝜒) ↔ (𝜓𝜒)) ↔ (𝜒 ∨ (𝜑𝜓))))

Proof of Theorem pm5.7dc
StepHypRef Expression
1 orbididc 948 . 2 (DECID 𝜒 → ((𝜒 ∨ (𝜑𝜓)) ↔ ((𝜒𝜑) ↔ (𝜒𝜓))))
2 orcom 723 . . 3 ((𝜒𝜑) ↔ (𝜑𝜒))
3 orcom 723 . . 3 ((𝜒𝜓) ↔ (𝜓𝜒))
42, 3bibi12i 228 . 2 (((𝜒𝜑) ↔ (𝜒𝜓)) ↔ ((𝜑𝜒) ↔ (𝜓𝜒)))
51, 4bitr2di 196 1 (DECID 𝜒 → (((𝜑𝜒) ↔ (𝜓𝜒)) ↔ (𝜒 ∨ (𝜑𝜓))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 703  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator