ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bigolden GIF version

Theorem bigolden 950
Description: Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.)
Assertion
Ref Expression
bigolden (((𝜑𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑𝜓)))

Proof of Theorem bigolden
StepHypRef Expression
1 pm4.71 387 . 2 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
2 pm4.72 822 . 2 ((𝜑𝜓) ↔ (𝜓 ↔ (𝜑𝜓)))
3 bicom 139 . 2 ((𝜑 ↔ (𝜑𝜓)) ↔ ((𝜑𝜓) ↔ 𝜑))
41, 2, 33bitr3ri 210 1 (((𝜑𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator